Turner-Fairbank Highway Research Center TRUCK PAVEMENT INTERACTION GROUP

"Comparison and Quality Evaluation of LTPP DLR Data from Ohio and North Carolina"

Phase I Draft Final Report:
"Quality Assurance and Quality Control Analysis"

Eric Weaver, SaLUT/AAT Bill Kenis FHWA

8/14/2000

BACKGROUND

The Long Term Pavement Performance (LTPP) Team at the Federal Highway Administration's (FHWA) Turner-Fairbank Highway Research Center (TFHRC) has been collecting pavement performance data across the United States and Canada since 1987. This effort includes more than 2400 asphalt concrete (AC) and portland cement concrete (PCC) test sections. These test sections are monitored for material property and performance changes over time. This data is collected and managed in the LTPP IMS database, and select data from that database was released with the DataPave 2.0 software as a resource to transportation industries internationally. Before data is included in the IMS database, it is processed and analyzed for quality assurance and physical merit. Two general categories of data are collected: General Pavement Studies (GPS) and Specific Pavement Studies (SPS). The GPS studies included prebuilt roads whereas the SPS studies included only new road construction.

As a part of the SPS studies, two states, Ohio and North Carolina, were selected to incorporate strain, deflection and stress instrumentation into selected SPS sections in their state, and to conduct controlled loading experiments. Raw data from the controlled loading tests have been reduced by PCS/LAW to key elements, enabling increased potential for user accessability. Raw dynamic load response (DLR) data collected from the SPS-2 sections in NC was processed and included in DataPave 2.0. Because some of the data obtained from the OH experiments was thought to be out of the anticipated range, none of this data was included in DataPave 2.0.

The Truck Pavement Interaction (TPI) group at TFHRC has been involved in performing controlled loading tests, and analyzing pavement response data since the mid 1980's. TPI uses this data to develop, validate and calibrate mechanistic pavement design models. With such experience in this area of work, TPI submitted a work proposal to LTPP, attached to this report as Appendix C, to examine a sample of the DLR data in question and provide and evaluation of the data in terms of quality and applicability to pavement modeling and design. The TPI group proposed three phases for a complete study, with work continuing in phases II and III based on the outcomes and recommendations of phase I. This document competes phase I. It deals with

the conduct of comparisons of the NC and OH data, as well as with the methods employed in their collection, processing and presentation, to identify differences, not only between the two sets of data, but also between data processing results obtained from PCS/LAW and TPI.

OBJECTIVE

Overall:

The main objective of this study is to determine those approaches and methodologies most appropriate for applications of measured stress, strain and deflection response obtained from inservice roads to theoretical (mechanistic) pavement analysis concepts and design processes.

<u>Phase I – Quality Assurance and Quality Control Analysis</u>: Identify biases, procedural or processing errors, or physical irregularities, if any, that exist in the sample DLR data. Provide a scientific explanation for findings, as well as suggestions for future experimental and/or procedural modifications to ensure improvement of data quality.

<u>Phase II – Statistical Analysis</u>. – Perform correlations and regressions to provide correlation coefficients and linear/non-linear regression values to identify trends between experimental results and test variables.

<u>Phase III – Mechanistic Analysis</u>. - Verify that mechanistic models exist, or can be modified to predict pavement response given inputs similar to those test conditions found in the selected SPS sections.

EVALUATION OF AVAILABLE INFORMATION

Efforts to begin work on this project began with an overall review of documentation describing the LTPP experiments and the databases associated with these experiments. PCS/LAW established the format for DLR data tables to be included in the LTPP Information Management System (IMS) database. Revised specifications for DLR data to match IMS standards were made and documented by PCS/LAW to allow for additional elements in the OH dataset (1,2). Descriptions of tables and table elements within the IMS database are given for DLR data as well as off-line data storage specifications and a description of the DLRCheck computer program and its functions.

In April of 1994, PCS/LAW prepared a draft document to describe SPS-2 experiment instrumentation information common to both OH and NC data sources (3). This document gives detailed information on data acquisition systems, loading plans and locations, measurement parameters, instrumentation specifications, placement and installation procedures for SPS-2 experiments. This is good information to compare with the NC DOT open-house document (4). This NC DOT open-house document contains general background and motivation for all LTPP experiments as well as experimental design matrices, site maps, section layouts, mix designs and material sources for NC SPS-2 experiments. After examination of this NC DOT open-house document, it was discovered that specific spatial layout information for instruments was not included, but an instrument layout plan was later provided to TPI via fax by NC DOT (5). The faxed layout plan included gage lables and relative placement, but no spatial dimensions, which must be extracted from the IMS database through the DataPave version 2.0 software (6). This

raised the question: "From what source did the spatial information included in the DataPave/IMS database originate, and why was it not provided to TPI?" The answer is at this point still unknown, but for further data analysis planned for phases II and III, it will need to be realized.

Some instrumentation in OH includes not only that set forth by the Strategic Highway Research Program (SHRP), but also instrumention placed for separate OH DOT and Ohio University (OU) experiments (7). For example, the LVDT's placed at the outermost positions of the test sections were not part of the SHRP protocol, and therefore data from those gages was not supplied as LTPP DLR data to PCS/LAW. The OH SPS instrumentation report (7) gives detailed information on instrumentation installation, calibration, data acquisition and work schedules for the SPS-1&2 sections in OH. Technical information required for completion of Phase I of this study is contained in the OH SPS instrumentation report (7) with the exception of instrument calibration factors, which had to be obtained directly from OU. Some spatial information for specific test sections and depth of OH LVDTs is not included, but this information was later obtained from OU via telephone conversation April 24, 2000. It was then discovered that all LVDT's used to measure entire pavement structure deflection (deep reference LVDT's in OH SPS sections) are anchored at a depth of 10 feet, and LVDT's used to measure only deflection of the base (shallow reference LVDT's) are anchored at the bottom of the base. Specific base depths vary with the test section and this information was obtained from the Ohio SHRP Test Road Open House booklet (8)

In addition to instrumentation details for both OH and NC data, for comparison purposes it was also essential to obtain information relating to data acquisition equipment and software which is contained in the MEGADAC technical manual (9). This document provides the information necessary for operation of the OPTIM Corporation's MEGADAC SERIES 3100 data acquisition system. This system also includes the Test Control Software (TCS) which is a database management package used to control how the MEGADAC data acquisition system will be used for testing applications. This may prove helpful in isolating possible causes of data collection errors.

INVESTIGATIVE PROCEDURE

A flow diagram of the process developed to achieve the objectives can be seen in Appedix A, figure 1.

Sample Data Examination

OH Data Examination

PCS/LAW provided representative OH AC DLR plots in hard copy form and raw DLR data from three OH AC sections, three OH PCC sections in electronic form on floppy disk. The hardcopies were plots of data traces as they appear when viewed with PCS/LAW's DLRCheck data processing software. OH files represented by these hardcopies include the following: j4a.001, j4a.008, j4e.001, j8a.001, j2e.012, j2e.010 and j8a.006. The file naming convention: first two digits represent site and site number, the next digit represents return visit to the site in alphabetical increments, and the numeric extension represents the run (repetition)number for that particular return visit to that particular site.

The compressed data files were copied from the floppy disks to hard drive and deflated using PKZip software. These compressed files contain at least two raw binary data files and several supporting MEGADAC (data acquisition equipment/ software) files. The raw files were opened and viewed using the PEAK software from OU. Plots of the raw data, from files that were a direct match with the hardcopies listed above, were printed to check that data trace forms matched. Some of the raw trace shapes that were produced did not appear to match their corresponding hardcopy traces at first glance, but it was later determined that peaks of interest had been "zoomed" using a feature in the DLRCheck software ("zoom" is not a feature included with Ohio's PEAK program).

Another observation is that the channel labels in the PEAK program are incremented one step ahead of the channel labels in the DLRCheck display. For example, channel 17 in PEAK corresponds to channel 16 in DLRCheck. DLRCheck begins labeling with channel zero (ch. 0) while PEAK begins labeling with channel one (ch. 1). This is not an important matter in terms of the data, but it should be noted for making comparisons between hardcopies of data traces provided in appendix B.

The MEGADAC system calibrates strains internally, therefore raw strain output from MEGADAC is in microstrain. PEAK can only read raw data with their supporting MEGADAC files, therefore Since all the DLRCheck output in hardcopy has been scaled using calibration factors, only peak strain channels could be directly compared with PEAK traces. Calibration factors can be applied using PEAK, however the results can be seen only at the PEAK output, and not on the trace display. PEAK outputs only the peak and valley values of the trace that it selects in ASCII form. Questions about the PEAK program were raised to OU pertaining to how the program algorithm identifies peaks and why expected peaks were not always being identified. An improved version of PEAK was suggested, which would allow the user to manually select peaks of interest in the event that the program does not automatically identify the expected peaks. This version of PEAK was to be supplied to TPI via e-mail, however it was never received. To check the validity of peak values supplied in the DLRCheck hardcopies, a combination of TCS and Microsoft Excel (XL) was chosen to manually extract peaks from the entire trace in ASCII form.

NC Data Examination

The same process was used to deflate and view the NC data, however there were no DLRCheck hardcopies to compare with PEAK output. NC file naming convention differs from OH in the following manner: for a file named t37201f.002, "t" represents truck (rather than an "f" for falling weight deflectometer), the next two digits indicate the SHRP State code, the next three digits indicate the last three digits of the SHRP ID for the test section, the last letter indicates the return visit (the sixth in this case), and the three digit extension represents the repetition number.

Data Processing

OH Data Processing

As stated previously, TCS, which comes with the MEGADAC system, was used to convert the entire raw data trace to ASCII format. Once this conversion was performed, XL was used to open the ASCII files, apply calibration factors to them and plot the results. Examples of these strain, LVDT, and pressure plots are included in Appendix A, figures 2-4. While specific calibration curves exist for each sensor at OU, they are not easily accessible, therefore general

factores supplied to TPI by OU were applied. OU clarified that all LVDT calibrations (approximately 600 LVDTs) are linear and pass through the origin with slopes ranging from 19.5 -20.5 Volts per inch. Therefore an average value of 20.0 V/in. was used for data processing. Dynatest strain gages were calibrated by OU using a MEGADAC data acquisition system in the $\frac{1}{4}$ Wheatstone Bridge setup, therefore no further conversion factors were needed in data processing for strain. A factor of 10 psi/volt is generally used for all pressure sensors, which are considered reliable to within \pm 2%, according to OU.

NC Data Processing

NC displacement traces appeared smooth, as seen in appendix A, figures 4 and 5, while strain traces exhibit high noise levels as seen in figures 6 and 7. Raw displacement channel tags indicated that the data had already been calibrated to inches. NC was contacted via telephone to request information verifying that displacement calibration factors varied from 81 V/in to 83.8 V/in. and were input to the MEGADAC system and applied during data collection.

Data Processing using DLRCheck Software

A working copy of the DLRCheck software and a user manual was requested from PCS/LAW. Both of these items were supplied, however during program execution, multiple errors resulting in premature program termination. Initial attempts to overcome this problem were made by telephone conversation, and PCS/LAW suggested that a difference in the version of the Microsoft Visual Basic (MVB) compiler between TPI and PCS/LAW might be the cause of the problem. To address this problem, TPI upgraded to MVB, Version 6.0, and scheduled an onsite appointment with PCS/LAW to recompile and run DLRCheck on the TPI notebook computer. It was later discovered that the problem had to do with the DLRCheck software, and not the compiler, as described below.

During a meeting with PCS/LAW the DLRCheck program was recompiled with MVB 6.0 and executed on the notebook computer. Unfortunately the same problems with the program were encountered as before. One problem with the program recognizing data file names was identified and attempts were made to correct it, but it was concluded that it would require significantly more time to correct the problem than was available at the meeting because of the complexity of the program.

The DLRCheck program was designed to read raw data files, supporting MEGADAC files with calibration factors, check raw data file channels for possible problems, identify problem channels with flags, read satisfactory channels and apply filtering, extract peak values and load those values into a Microsoft Access database. Problems encountered when running DLRCheck were believed to be due to variations of numbers of channels between OH AC and PCC test sections, as well as OH and NC PCC test sections. As a result, it is necessary to modify the code of the DLRCheck program to read data from specific OH and NC sections, based on the number of channels present in the raw data files. TPI believes the program has some difficulty reading necessary information between data sources because of format inconsistency or program inflexibility issues. Because of this, all necessary information that the program needs to correctly process, is hardcoded rather than relying on user input. This makes the code very long, and since there is no documentation within the code, it would be very difficult for someone unfamiliar with the program to identify where and how the calibration factors are applied.

TPI requested the source code, but permission for the TPI contact at PCS/LAW to provide it was unavailable at the time of the meeting. However, an offer was made to modify the program to read at least one NC and one OH data set for comparison purposes with raw MEGADAC data processed by TPI using TCS and XL.

Modified DLRCheck program(s) were e-mailed to TPI as an executable file(s) (no recompilation needed), however similar problems were encountered upon execution of these modified versions. PCS/LAW was contacted concerning these problems, and it was suggested that TPI leave the TPI notebook computer with PCS/LAW until DLRCheck was executed successfully. That option was deemed unnecessary for the completion of this phase of the study since other problems with the DLRCheck program had been uncovered during the meeting. These problems alone may be reasonable explanation for differences in data processing results. All raw DLR data possessed by PCS/LAW was acquired by TPI at the meeting and loaded to the TPI notebook for application to Phases II and III of the study.

DATA ANALYSIS

Some data was included in a limited analysis involving VESYS5 and IlliSLAB flexible and rigid pavement response models respectively. Model output is included in appedix D. Both flexible and rigid pavement section from OH, and a rigid pavement section from NC were chosen to determine if results obtained from TPI raw data processing were within the range predicted by the models.

OH and NC PCC sections were chosen to have the same physical dimensions for both the payment and base material. While specific material property values were unavailable with the material provided to TPI from LTPP, the analysis was performed unsing general values for Poisson's ratio and Young's modulus for "ballpark" comparison purposes.

RESULTS, COMPARISONS AND DISCUSSION

OH AC Data Processing Results

Data traces, corresponding to DLRCheck output hardcopies supplied by PCS/LAW, were processed and plotted using TCS/XL and PEAK for comparison with DLRCheck. When the initial values (baseline's, or offsets) were subtracted from the signals, TCS/XL results were nearly identical to those obtained with PEAK, however, both PEAK and TCS/XL results were significantly less than those produced with DLRCheck. Direct comparison plots of all corresponding traces from DLRCheck, PEAK and XL are given in appendix B. Calibration factors were applied in XL and peak values corresponding to those shown on the DLRCheck hardcopies were extracted manually. Appendix A table 1 shows the percent difference in peak values between the three processing methods. On average, differences in results from TPI processing and those supplied from PCS/LAW ranged from –50 percent for strain to –1799 percent for pressure, which is believed to be caused by misapplication of gage calibration factors. These results are contained in Table 2, appendix A.

NC PCC Data Processing Results

Strain data channels from NC exhibit low signal-to-noise ratios, indicating the need for filtering in some cases to complete re-instrumentation in others. Displacement data from NC appears to

be in good shape. Three strain gages and two LVDT's were chosen to perform a comparison between maximum peak and valley entries contained in the IMS database (obtained through DataPave 2.0) to those obtained through TPI processing. In order to do an accurate comparison, the same number of data points applied in the moving average filter used by DLRCheck (according to what is reported in the DataPave/IMS) was also used by TPI. These results are given in Table 3, appendix A.

The most obvious findings illustrated in table 3 are the strong match between results for displacement as opposed to the weak match for strain. Displacement values between DataPave/IMS entries and TPI results differ on average by only 0.25 percent, whileDataPave/IMS strain value entries are on average 16 percent of that found by TPI. The reason for the large difference in strain is puzzling considering the strong between displacement values. The signal processing problem causing this discrepancy may lie in the weak strain signal (in comparison with the high noise level in the channel), as mentioned earlier. Low NC strain readings in the DataPave/IMS database have been consistent throughout this study, and the following observations should be discussed. The original strain devices planned for NC were embedded Dynatest gages, like those used at OH, but the gages soon failed after road construction. These gages were replaced with surface-mounted gages as an alternative to the Dynatest gages. Surface mounted gages are trouble-prone in this application for a number of reasons. First of all they are exposed to the rigors of the environment. Secondly there are a number of controversial issues pertaining to quality of strain data from gages mounted to a material, such as concrete, which has at least two materials (aggregate and matrix) with different strain responses to a given load. Thirdly, the surface-mounted strain gages were directly exposed to the truck tires which provided the load for each experiment. This alone will cause different readings as the gage is deformed to direct load application, for which they were never designed.

In addition to the problems associated with the surface mounted gages, wheel path offset was never recorded for NC DLR files. Wheel path offset plays a very important role in how a gage will respond to a passing load. Therefore, it is recommended that any data from these gages should be used in analysis for general trends, and not actual strain experience by the material.

DataPave 2.0 / IMS Application Results - NC

Some problems were encoutered while using DataPave 2.0/IMS. These problems were identified and reported in the "LTPP Data Analysis/Operations Feedback Report", which was supplied to TPI by SAIC. This report is included in appendix D.

Truck geometry values were not available due to what was likely an error in the program. When the truck geometry tables were requested, the software offered the following error message: "Error: 3061 Too few parameters. Expected 1." Perhaps this bug can be easily corrected by the software developer, but without the truck geometry values, the data would be useless for continuation to phases II and III of this study.

It appeared that axle loads were represented by values that were too low. This was probably a English to SI unit conversion error, because when the values were multiplied by 4.45^2 , the proper values were obtained in kiloNewtons. Also values of units for time corresponding to

strain and displacement peaks and valleys were improperly labled as microseconds, rather than milliseconds.

Pavmement temperature was not included as data within the DataPave/IMS for DLR sections included in the DataPave 2.0 software. This information would be very important for further application to data analysis proposed in phases II and III of this study. Air temperature was available in a separate table from automatic weather stations. While air temperature may be used to estimate pavement temperature, it is not reliable to any accurate degree due to the lag in changes in pavement temperature with respect to relatively fast changes in air temperature. Furthermore, not only was air temperature for DLR runs not included with DLR data, air temperature data was not available for all test runs examined in the sample data set.

Data Analysis Results

Results of the analysis performed using VESYS5 and IlliSLAB are given in appendix A, table 4. Generally, the values predicted by the models match closely with that obtained from TPI processing. When compared to values provided in the DataPave/IMS database, deflection values match closely but IMS strain values remain low. This is consistent with results mention above.

CONCLUSIONS

OH Data Conclusions

Initial processing results indicate that DLRCheck results are considerably higher than those obtained by TPI. Differences in results from TPI processing methods and those supplied from PCS/LAW ranged from -50% to -1799%, which is believed to be caused by misapplication of gage calibration factors.

The condition of the OH data appears very good for AC data. The physical validity of the data was verified through analysis with the VESYS5 mechanistic flexible pavement response model. Anyone wishing to conduct further analysis of this data will require information regarding site-specific material properties, truck geometry, axle loads, wheel path offset, tire inflation pressure, speed and pavement temperature data.

The PCC data does contain some moderate noise, which can be smoothed through filtering without losing significant signal amplitude. The physical validity of the data was verified through analysis with the IlliSLAB mechanistic rigid pavement response model. Further analysis of the data will require information regarding site-specific material properties, truck geometry, axle loads, wheel path offset, tire inflation pressure, speed and pavement temperature data.

NC Data Conclusions

Strain data sets provided from NC exhibit considerable amounts of noise, indicating the need for filtering in some cases to re-instrumentation in others. DLRCheck-processed strain results which were entered into DataPave/IMS are low compared to the results of TPI processing. This

discrepancy is believed to be a combination of the DLRCheck software failing to select the proper peaks (in the low amplitude/high noise signals) and the surface mounted strain gages which are known to be trouble-prone in this type of application. If this strain information is included in the DataPave/IMS database, a warning of the limitations of the DLRCheck software or strain gages, or both, in addition to a lack of wheelpath offset, and pavement temperature data should be included. This strain data may be useful in identifying general trends, but may not reflect actual strain associated with the specific loading or material characteristics. However, the displacement data appears to be in good condition. On average, maximum peak values of strain found in the IMS database were 16 percent of results obtained by TPI in contrast to a small difference with displacement of 0.25 percent.

DLRCheck Software Conclusions

More work needs to be done with DLRCheck to ensure the software has the flexibility to identify and read all types of data files from DLR sites. The software does not have the ability to allow the user to input calibration factors for instrumentation, nor can the hard-coded calibration factors be easily verified. Low signal to noise ratios seem to present a problem for DLRCheck as illustrated by the DataPave/IMS NC strain data. There exists a need for more work to be done to ensure proper extrusion of peaks and application of calibration factors, as well as database building.

DataPave 2.0/IMS

Some problems with the IMS database were identified and reported in appendix D. In order for these problems to be identified and corrected, someone knowledgeable about the history and present state of DLR pavement instrumentation and testing, as well as the mechanics of these materials, needs to be responsible for database content.

RECOMMENDATIONS

OH Data Recommendations

This data should be included in the DataPave/IMS database provided that all necessary supporting information is available, including: site-specific material properties; site-specific geometries; spatial instrumentation information; truck geometry; axle loads, configurations and load balance; wheel path offset, tire inflation pressure, tire type and dimensions; vehicle speed and pavement temperature data, etc. All this information should be available from OU.

NC Data Recommendations

NC strain data already included in DataPave/IMS should be either re-processed, ensuring that DLRCheck is extracting the proper peaks/valleys, or it should not be included at all. NC displacement data already in place in DataPave/IMS seems to be in good condition, however for analysis applications all necessary supporting information needs to be made available, including: site-specific material properties; site-specific geometries; spatial instrumentation

information; truck geometry; axle loads, configurations and load balance; wheel path offset, tire inflation pressure, tire type and dimensions; vehicle speed and pavement temperature data, etc. If pavement temperature instrumentation is not present, this should be stated, along with a suggestion for converting air temperature to pavement temperature. All this information should be available from NC DOT.

DLRCheck Software

This software should be improved to allow input of raw data from any DLR site regardless of the number or order of data channels. Specific attention should also be placed on ability of the program to accept user input of calibration factors. It may be possible to adjust DLRCheck to more efficiently extract peaks/valleys in high noise signals, or perhaps the noise/signal ratio cutoff level needs to be re-established to identify junk signals. Attention should be focused on why DLRCheck rejects some signals and accepts others with similar noise content.

DataPave 2.0/IMS

Problems identified in the report in appendix D, "LTPP Data Analysis/Operations Feedback Report" need to be addressed. In addition to the information already included with DLR tables, the following tables should also be made available for analysis purposes:

Pavement temperatures, or air temperature corresponding to those runs in the DLR tables; Site-specific material properties; site-specific instrumentation spatial information, as well as calibration factors; tire dimensions.

In Addition

As part of National Pooled Fund Study SP&R 2(203), with OH serving as lead State, both TPI and OU will thoroughly process data taken from additional OH test sections. This data was originally paid for by FHWA and collected as part of a truck size and weight (TS&W) study. Parameters of interest included axle and load configuration, tire type and tire inflation pressure, effects of hot weather on vertical pavement shear, measured using innovative methods of pavement instrumentation. TPI has ensured this data to be well documented with all supporting information available for analysis purposes with the intention of calibrating pavement response models.

It is recommended that LTPP support TPI's effort in processing and analyzing the TS&W data for application to mechanistic pavement models, as outlined for phases II and III for the continuation of this study. The completion of phases I and II, will provide LTPP with an excellent addition of well documented DLR data for use in Data Pave. It will also provide LTPP with a methodology for validating and calibrating both a FEM and a layer system model (VESYS and one of Illislab, Islab 2002 or JSlab).

LIST OF REFERENCES

- FHWA LTPP file: "Pavement Instrumentation/Load-Response/DLR IMS Issues Revised IMS Specifications for Dynamic Load Response (DLR) PCC Data to Include OH PCC Data."
- 2. FHWA LTPP file: "Pavement Instrumentation/Load-Response/DLR IMS Issues Revised IMS Specifications for Dynamic Load Response (DLR) AC Data."
- 3. PCS/LAW file: "Pavement Instrumentation Program for SPS-2 Experiments Instrumentation Details"
- 4. NC DOT file: "SPS-2 Seasonal and Load Response Instrumentation North Carolina D.O.T. Open House Overview of the LTPP Program"
- 5. NC DOT file: NC SPS-2 Instrument Layout Plan facsimile
- 6. FHWA LTPP product: "Data Pave 2.0" software.
- 7. FHWA LTPP file: "Development of an Instrumentation Plan for the Ohio SPS Test Pavement"
- 8. OH DOT file: "Ohio Test Road Strategic Highway Research Program Open House"
- 9. "Technical Manual for the MEGADAC SERIES 3100"

APPENDIX A

Figures and Tables

Figure 1: Process of DLR data collection, processing and comparison.

Samples @ 2000 Hz

Figure 2: Typical Ohio AC strain trace created with XL.

1000

-500

Figure 3: Typical Ohio AC displacement trace created with XL.

7000

5000

6000

OH AC DLR Vertical Pressure from Sensor PC2, J8A.002 (Section J8, Test A, Run2)

Figure 4: Typical Ohio AC pressure trace created with XL.

Figure 5: North Carolina PCC displacement trace created with XL.

Figure 6: Example of a decent North Carolina PCC surface strain gage trace created with XL.

Samples @ 1000 Hz

Figure 7: Example of a poor North Carolina PCC surface strain gage trace created with XL.

Table 1: Hardcopy peak value comparisons between DLRCheck, PEAK and XL.

Ohio AC Sections - Trailing axle peaks

*lead axle

Calibration factors:

Displacement (20in/V)

Pressure: 10psi/V

V	
Difference XL & DLRChk (%) -36 -160 -152 -55 -4483 -57 -160 -4509 -56 -52 -163 -163 -163 -163 -48	-163 -4491
Difference (%) .37 .158 .162 .52 .4483 .57 .165 .4509 .57 .167 .164 .469	-157
Initial value 0.625 6457 3442 0 -4.89 0.625 4001 10 22 9 13 6 -3589 8222 8821 0.625 0	2690 5
TCS/XL (minus Lv.) 1651 1558 332 55 -30 95 349 44 183 150 128 164 204 509 203 126 164	198 54
PEAK (apprx.) 1650 1568 320 56 -30 95 144 1182 1128 1128 1126 125 1125	202 54
DLRCheck 2253 4052 837 85 -1375 149 909 2028 228 193 193 255 535 1340 535 176 246 2513	520 2479
sensor strain (ue) disp. (um) disp. (um) strain (ue) press. (kPa) strain (ue)	disp. (um) press. (kPa)
N N N + N + N + N + N + N + N	
filename char filename char jze.010 dyn1 jze.012 lvdt j4a.008 dyn1 j4e.001 lvdt j4e.001 dyn1 j8a.001 dyn11 j8a.001 dyn11 j8a.001 dyn11 j8a.001 dyn11 j8a.001 lvdt2 j8a.001 lvdt2 j8a.006 dyn11 j8a.006 dyn11 j8a.006 dyn11 j8a.006 dyn11	j8a.006 j8a.006

Table 2: Average difference in TPI and DLRCheck results from OH AC data (hardcopies)

Sensor	Average %	Number of Samples	Coefficient of Variation
	Difference		(%)
Strain	-50	10	-12
Displacement	-112		.7
Pressure	-1799	7	1

Table 3: NC Smoothed Maximum Peak or Valley Strain and Displacement from IMS Entries vs. TPI Processing Results. ('p' indicates peak, and 'v' indicates valley)

				Strain (ue	ı (me)				Displacement	nent (um)	
		Stra	Strain 4	Strain	ain 5	Str	Strain 6	LVDT 2T	T2T	QA1	LVDT 2B
Section.visit.rep	Date	IMS	TPI	IMS	TPI	IMS	TPI	IMS	TPI	IMS	且
t37201g.001	3/17/97	22	3.0p	па	1.6p	na	4.0p	313.2p	311.2p	-161.7v	-161.2v
t37201g.002	3/17/97	œ.	all noise	Ē	all noise	na	all noise	340.4p	340.2p	-221.3v	-221.3v
t37201g.003	3/17/97	na	2.6p	Па	1.90	Па	2.5p	257.2p	256.3p	-136.6v	-136.5v
t37208e.105	5/15/96	-1.9v	-11.8v	-1.6v	-9.6v	-1.4v	-8.5v	na	na/flat	ľ	-231.4v
t37208e.106	5/15/96	-1.6v	-10.3v	-1.6v	-10.4v	-1.3v	-8.4v	Па	na/flat		-377.4v
t37208e.107	5/15/96	-1.6v	-10.0v	.1.4v	-8.5v	-1.1v	7.40	Па	na/flat		-367.2v
t37208e.108	5/15/96	-1.5v	-9.0v	Па	-8.6v	-1.3v	√8.⁄-	Па	na/flat	-192.3v	-192.2v
t37212a.001	10/11/94	-1.9v	-11.8v	Па	-10.2v	-2.9v	~17.9v	109.4p	109.1p	-65.7v	-65.5v
t37212a.002	10/11/94	-2.0v	-12.3v	Па	~0.6-	4.6	-28.2v	74.5p	74.4p	-49.5v	-49.4v
t37212a.003	10/11/94	-1,1y	-8.8√	Па	16.8p	414	-25.4v	111.9p	111.7p	-72.8v	-72.5v
t37212a.004 10/11/94 -2	10/11/94	-2.4v	-15.1v	22	-16.3v	-2.5v	-15.4v	79.9p	79.60	-52.5v	-51.6v
						To the second se				CONTRACTOR OF THE PARTY OF THE	

Entries not found in IMS for unknown reasons.

Entries not found in IMS for reasons consistent with TPI results.

Peaks not matching in either negnitude space or sign,

raw data processing results and maximum value entries found in IMS database. Table 4: Comparison of VESYS5 and IlliSLAB results with maximum values of TPI

	Longitudinal	Total	Pressure
	Strain	Displacement	
OH AC	(en)	(iii)	(psi)
J8a.002	AC bottom		Base Bottom
VESYS5	118	0.05	2.96
TPI RAW	120	0.0196	6.33
OH PCC		T Armini and the second	
J8a.002	PCC surface		
IlliSlab*	18.72	0.018	
TPI RAW	14.72	0.0093	
NC PCC			1000
t37208e.004	PCC Surface		Andrews To the Control of the Contro
IIIiSlab*	12.95	0.01025	
TPI RAW	17	0.0158	
IMS	2.5	0.0165	

*averages of two nearest node deflections

APPENDIX B

Corresponding DLRCheck, PEAK and XL Plots

LAW/PCS-Supplied Hardcopy Data Trace Summary

Trace Plot	Sensor	Page #
J2e.010	dyn12	1
J23.012	Ivdtl	4
J4a.001	lvdt1	7
J4a.008	dyn17	10
J4a.008	pc2	13
J4e.001	dyn16	16
J4e.001	lvdtl	19
J4e.001	pcl	22
J8a.001	dyn10	25
J8a.001	dyn13	28
J8a.001	dynll	31
J8a.001	dyn15	34
J8a.001	lvdtl	37
J8a.001	lvdt2	40
J8a.001	Ivdt4	43
J8a.006	dynll	46
J8a.006	dyn13	49
J8a.006	dyn15	52
J8a.006	pc1	55
J8a.006	lvdt3	58
J8a.006	pc2	61

Test 10 9 Dyn10 10 Dyn11 11 Dtni2 12 Dyn13 13 Dyn14 14 Dyn15 © Graph © Show Summary © Multi Channel Find Peaks Failed Data Speed = . Speed = .	R: x: 2656 y: -52 S: x: 2656 y: -53		Dyn12	
2487, 676, P 2538, -85, V 2534, -21, P 2773, -552, V 2808, 2253, P	Eomments:	☐ Debug F		Clear L

TOLK MECK

д .

STS = 34.5 % Samples @ 2000 Hz 1) 2488,477 ME

(3) 2808/1651/LE C.

1.50.00

DIR

4

FEAK

J 2981, 984 pm 2547

6

38.9%

58082

w

PEAK

 3442μ j4a.001 LVDT1 Displacement (minus initial value = 2.81 V)

DLZ -

TRAK

j4a.008 dyn17 Strain

DLR

PEAK

j4a.008 PC2 Voltage (minus initial value)

DLR

XL_ Samples @ 2000 Hz -40 -20 (9u) nisti8

j4e.001 Dyn16 Strain (minus i.v. = 0.625)

DIR

Samples @ 2000 Hz : @8 5 1/2 \odot M 3516, 265, Jum -50 (mu) înəməselqziQ

 λ L

j4e.001 LVDT1 Displacement (minus i.v. = 4001 um)

XL 0009 10/8 8 547.6 5000 4000 ひた Samples @ 2000 Hz 10/2. たた PSIR G. ST = KRA (3) 3586, 0.657 + (43.9 th) 2228 10ps, /1 3000 2000 D. 3017, 0357 V (B. 2 KZ) 1000 -0.100 0.100 0.000 0.500 0.400 0.300 0.200 0.700 0.600 (V) egeiloV

j4e.001 PC1 Voltage (minus i.v. = 0.147 V)

24

DLRV

TEAK

DIR

XL Samples @ 2000 Hz) 09--20 -40 (9u) nisti2

j8a.001 Dyn11 Strain (minus iv = 12.501)

,

DATA REDUCTION. Test 1 12 Dyn13 13 Dyn14 15 Dyn16 16 Dyn17 17 Dyn18 O Graph O Show Summary O Multi Channel Find Peaks Failed Data	R: x: 2576 y: S: x: 2576 y:	0)yn15
	Comments:	> 1	☐ Deb	Save Peaks Up Peak Processing	<u>Cl</u> ear

TEAK.

XL 7000 0009 Samples @ 2000 Hz 2000 1000 0 -50 50 100 200 150 (911) uistis

j8a.001 Dyn15 Strain (minus i.v. = 6.251 ue)

DUZL

Test 1 ▼ 16 Dyn17 ↑ 17 Dyn18 18 Dyn19 19 Dyn20 20 Dyn21 ▼ ○ Graph ○ Show Summary ○ Multi Channel ▼ Find Peaks □ Failed Data 3843, 0, C 3926, 535, C 4155, 143, C	P: x: 3882 y S: x: 3882 y	: 38			LVDT1
	Comments:	> 1	☐ Debug F	Save Peaks Peak Processing	Close

DUR

×L Samples @ 2000 Hz 10 985, 24-5 10 4559, 509 ps 10 4735, 822 ps 10 4815, 286 ps -100 Displacement (um)

j8a.001 LVDT2 Displacement (minus i.v. = 8222 um)

Save Peaks

☐ Debug Peak Processing

Clear

Close

<.

Comments:

ХL Samples @ 2000 Hz (I) (2) 5814, 205 pm -50 (mu) inemeselqsiQ

j8a.001 LVDT4 Displacement (minus i.v. = 8821 um)

DIRV

XL Samples @ 2000 Hz -20 -40 \bigcirc Strain (ue)

j8a.006 Dyn11 Strain (minus i.v. = 0.625 ue)

Į,

j8a.006 Dyn 13 Strain

DUZ

×L_ 7000 0009 5000 Samples @ 2000 Hz 2000 1000 -100 -50 100 90 150 200 (9u) nists

isa.066 Dynts Strain

DURV

DERV

FEAK

Samples @ 2000 Hz (0 7575, 5216) -50 (mu) InemessiqaiQ

XL

j8a.006 LVDT3 Displacement (minus i.v. = 2690 um)

DLR

PEAK

XL7000 0009 5000 4000 3000 2000 1) S. S. S. S. S. S. C. 1000 -0.100 l 0.300 0.100 0.000 0.500 0.400 0.200 0.700 0.900 0.800 0.600 (V) egsiloV

j8a.006 PC2 Voltage (minus i.v. = 0.071 V)

APPENDIX C

Original Work Proposal

Turner-Fairbank Highway Research Center TRUCK PAVEMENT INTERACTION GROUP

Work Proposal:

"Comparison and Quality Evaluation of LTPP DLR Data from Ohio and North Carolina"

11/15/1999

Background

The Long Term Pavement Performance (LTPP) Team at the Federal Highway Administration's (FHWA) Turner-Fairbank Highway Research Center (TFHRC) has been collecting pavement performance data across the United States and Canada since 1987. This effort includes more than 2400 asphalt and portland cement concrete test sections. These test sections are monitored for material property and performance changes over time. This data is collected and managed in the LTPP IMS database, and select data from that database was released with the DataPave 2.0 software as a resource to transportation industries internationally. Before data is included in the IMS database, it is processed and analyzed for quality assurance and physical merit. Two general categories of data are collected: General Pavement Studies (GPS) and Specific Pavement Studies (SPS). The GPS studies included prebuilt roads whereas the SPS studies included only new road construction. As a part of the SPS studies, two states, Ohio and North Carolina, were selected to incorporate strain, deflection and stress instrumentation into selected SPS sections in their state, and to conduct controlled loading experiments. Raw data collected from the SPS-1 (rigid pavement sections) and SPS-2 (flexible pavement sections) have been reduced by PCS/LAW to key elements, enabling increased potential for user accessability. Raw data collected from the SPS-1 sections in NC was processed and included in DataPave 2.0. Because some of the data obtained from the OH experiments was thought to be out of the anticipated range, none of this data was included in DataPave 2.0. No further analysis of either the NC or OH data, in terms of quality, trend identification or applicability to mechanistic pavement design has been performed to date.

Objective

The main objective of this study is to determine those approaches and methodologies most appropriate for applications of measured stress, strain and deflection response obtained from inservice roads to theoretical (mechanistic) pavement analysis concepts and design processes.

Approach

Work for this study will be divided into three phases:

<u>Phase I – Quality Assurance and Quality Control Analysis.</u> - Identify biases, procedural or processing errors, or physical irregularities, if any, that exist in the sample DLR data. Provide a scientific explanation for findings, as well as suggestions for future experimental and/or

procedural modifications to ensure improvement of data quality. Work will be initiated by reviewing all the supporting material to become familiar with all information sources and to decide what data processing software will be appropriate for TPI use.

<u>Phase II – Statistical Analysis</u>. – Perform correlations and regressions to provide correlation coefficients and linear/non-linear regression values to identify trends between experimental results and test variables.

<u>Phase III – Mechanistic Analysis</u>. - Verify that mechanistic models exist, or can be modified to predict pavement response given inputs similar to those test conditions found in the selected SPS sections.

Work Tasks

Phase I - Quality Assurance and Quality Control Analysis - TPI-selected data processing software will be used to convert binary raw data to ASCII format. Then a comparison of gage, loading, and site-specific factors will be performed to identify any obvious data input errors, which would affect processing. Once the input data match is confirmed, initial processing will be performed by TPI and then compared to that data processed by PCS/LAW. If differences in results are identified at this point, focus will be applied to differences between processing software algorithms. If results match at this point, a further investigation of the OH test setup and instrumentation will be implemented to ensure that proper experimental data was supplied to PCS/LAW. Specific gages may have to be tested to confirm operational integrity, or perhaps a miscommunication in data transfer occurred and can be rectified. TPI will require a package of available material from PCS/LAW including:

- information on experimental design;
- test section physical and environmental description data;
- data collection instrumentation, software and supporting literature;
- data processing software and its supporting literature;
- representative set of "suspicious" and "good" data with file naming conventions. The representative data set should included the data in its raw and processed form.
- additional raw data if needed for Phases II and III.
- all processed data from NC and OH
- all software used to process the raw data in a form suitable for input to DataPave 2.0

Task A. Familiarization of LTPP Data Collection and Processing

A.1. Review supporting literary material:

"Pavement Instrumentation/Load-Response/DLR IMS Issues";

"Development of an Instrumentation Plan for the Ohio SPS Test Pavement";

- "SPS-2 Seasonal and Load Response Instrumentation North Carolina D.O.T. Open house Overview of the LTPP Program";
- "Pavement Instrumentation Program for SPS-2 Experiments Instrumentation Details";
- "Technical Manual for the MEGADAC SERIES 3100";
- "Climatic Data for SPS Test Sites"
- "Minnesota Road Research Project: Load Response Instrumentation and Testing Procedures"
- A.2. Review DLRCheck software and supporting literature.
- A.3. Choose appropriate software for TPI data processing.

Task B. Data Examination and Processing

- B.1. Examine each of the data files provided in their as-received form to identify any discrepancies, trends or physical irregularities.
- B.2 Perform detailed comparison of experimental procedures between data sources to identify biases or errors due to data acquisition/instrumentation processing software input data influences. i.e. gage calibration factors and spatial placement. loading data, etc.
- B.3 Process sample data sets using DLRCheck and TPI-selected software.
- B.4. Compare processed data to identify any biases or errors introduced by processing.
- **Task C.** Identify problem areas and seek solutions to fill in missing or erroneous entries to the data. This effort may require travel to NC or OH to identify specific records for gage sites, test questionable gages still in service, etc.
- **Task D.** Prepare and submit Phase I report documenting all work performed, findings, discussions and conclusions.
- <u>Phase II Statistical Analysis.</u> Correlation and regression analyses of data will be performed to determine repeatability between runs, identify dominant trends in the data, identify degree of linearity of results with respect to test variables and identify environmental and/or loading variables most influential to these trends.
- **Task E.** Process and group data into suitable sets for correlation and regression analyses purposes. Perform auto and cross correlation analyses on processed data to determine repeatability between runs, identify the importance of each variables involved in the data.

- **Task F.** Perform linear and non-linear multivariable regression analyses on the processed data to identify dominant trends in the data, degree of linearity of results with respect to test variables and environmental and/or loading variables most influential to these trends.
- Task G. Prepare and submit Phase II report documenting all work performed, findings, discussions and conclusions.
- Phase III Mechanistic Analysis. Two readily available mechanistic model sets will be selected: one for rigid pavements and the other for flexible pavements. These models will be employed using input data, which identifies as close as possible with the climatic, loading, geometric and material properties associated with the selected SPS test sections. Simulation results obtained by the models will be compared to experimental results. Model validity will be assessed based on model and experiment results comparison. If in the event the models do not demonstrate sensitivity to influential variables identified in Phase II, adjustments to the model may be implemented.
- **Task H.** Select mechanistic models for rigid pavements and flexible pavements. The selection criteria will be model mechanistic basis, validity, reliability and availability. The mechanistic models developed at TPI group will be first examined. Test selected models using input data, which identifies as close as possible with the climatic, loading, geometric and material properties associated with the selected SPS test sections. Simulation results obtained by the models will be compared to experimental results.
- Task I. Validate selected models based on simulation results and filed data comparison. If discrepancy exists, the model parameters will be calibrated using typical field measurement and more simulations will be performed to further validate the models. If in the event the models do not demonstrate sensitivity to influential variables identified in Phase II, adjustment or improvements to the model will be performed. The results from regression analyses conducted in Phase II will be used for model improvement.
- **Task J.** If needed, develop software to implement the selected mechanistic models. The software will be a user-friendly, windows based computer program.
- **Task K.** Prepare and submit Phase III progress report that documents all work performed, findings, discussions, conclusions and suggestions for the DLR study overall.

At the end of each Phase, an interim report outlining procedure of the investigation and findings for that Phase, will be submitted.

ESTIMATED COST:

<u>Labor Costs</u> - One (1) research engineer and one (1) mechanical engineer, and possibly input from OH and/or NC personnel, are needed to complete the work. A computer programmer may be needed if computer software to be developed

Phase I - Quality Assurance and Quality Control Analysis (staff labor hours)

	•	
Task A.	40	
Task B.	220	
Task C.	220	
Task D.	70	
Subtotal	550 @\$90/hr. =	\$49,500
Phase II - Statistical Analysis (staff labor hours)		-
Task E.	150	
Task F.	150	
Task G.	100	
Subtotal	$\frac{1}{400}$ @\$90/hr. =	\$36,000
Phase III – Mechanistic Analysis (staff labor hours) Task H. Task I. Task J. Task K. Subtotal	40 160 240 100 540 @\$90/hr. =	\$48,600
Total Staff Labor	1455 @\$90/hr. =	\$134,100
Other Costs		
Outside Consultant Support hours Equipment Travel	150 @\$65/hr. =	\$9,750 \$2500 \$5000
TOTAL COST:		\$151,350

APPENDIX D

"LTPP Data Analysis/Operations Feedback Report"

LTPP Data Analysis/Operations Feedback Report: Objective and Instructions

LTPP has made every effort to insure that quality data is provided to users. However, it is not possible to review every item of data or perform every comparative evaluation between items. As a result, users may encounter instances where data does not conform to expectations and an apparent systematic problem exists. LTPP encourages users to report such instances for further investigation when they are unable to satisfactorily explain them for themselves.

In order to facilitate reporting data which suggest or demonstrate the need for corrective actions or further investigation of the data, and/ or data collection and processing procedures, LTPP has developed the Long Term Pavement Performance Data Analysis/Operations Feedback Report. This form is applicable(but is not limited) to the following circumstances:

- the absence of critical data for specific test sections;
- data which appear to be incorrect, contradictory, or otherwise suspect;
- data which are not currently collected but which are needed to fill voids identified in the analysis;
- recommendations arising from the analysis as to how data collection procedures might be improved.

Instructions for completion of the report are as follows.

Report No.: A unique, sequential number is to be entered, by the originator of the feedback report, in the block labeled **Report No.**. The number is to consist of a 3-8 character identifier for the source of the report, followed by an Arabic numeral (e.g., XYZ-1, XYZ-2, etc.). The character identifiers may be derived from company names, or the names of individuals.

Submitted by: Enter the name of the <u>individual</u> submitting the report along with a phone number or e-mail address.

Subject: Enter a BRIEF (1-line), but meaningful synopsis of the feedback topic.

Situation: Describe, as fully as possible, the data or situation in question. Attach additional pages as necessary. Where insufficient information is provided to describe the issue, the submittal will be returned for further clarification before any action is taken.

Recommended Action: Clearly outline the specific action(s) you believe necessary to resolve the situation identified. Attach additional pages as necessary.

The completed form should be sent to the FHWA LTPP Team at the address or facsimile number listed on the Feedback Report. An electronic copy of the form (provided in WordPerfect) can be sent to ltppinfo@fhwa.dot.gov. Otherwise, the .pdf file can be printed and the hard copy returned to the address or facsimile number on the Feedback Report. The LTPP Team will keep the user informed of any action taken on the report and/or its resolution.

TO: Long Term Pavement Performance Program HRDI-13

6300 Georgetown Pike McLean, VA 22101-2296 Facsimile: (202) 493-3161

Email: LTPPINFO@fhwa.dot.gov

	ita Analysis/(Report No.: EJW-1	
F	eedback Rep	ort		
			Date: 8/14/2000	
Submitted by:				
			se entries while accessing then	
Improper units dates do not may available: softw (5.) Pavement Recommended unit label to minot, verify propavement (or a	for time: units a atch, even for dat vare indicates an temperature is no Action: (1.) Coulliseconds (ms).	re milliseconds, rate entries within the error. "Error: 306 at available at all, rect conversion for Ensure that casunplier. (4.) B	ues need to be multiplied by 4. ather than microseconds as inche same run. (4.) Truck geomy I Too few parameters. Expected and air temperature is not avactor applied to arrive at SI undates supplied with database in a provide and air-pavement terms.	etry tables are not 1 1." ailable for all runs. 1its. (2.) Change the 1put files match, and if eveloper. (5.) Add
factor.	Distribution		Urgency (check one) Resolution needed by: (Date) Next upload of affected data	1
Referred to:	Assigned to:	Information Copies to:		•
			Comments	
Action to be ta	ken: As recomm	ended As	outlined below	Date assigned:
				Date due:
Findings/Actio	ns Taken			
			Date completed:	
			we sample and would be a managed	

APPENDIX E VESYS and JSLAB Output

TOH THE CALL LITTE LBACE DAIL: STATE MYS CFIT = 100ps1 Flexural Strength THE PARTY OF THE LOCATION AXLE LOAD : 5,2 Kg WDT 3 MICHARY TANKEN LYDT 4 67 42 30" SPECIE : 30 mph WHEEL LATH OFFSET: 8" REPOR AND WITHTH = 5.94" ALLE 2 MHEREKE: 191.9' AXLE MHEFLEASE MIL my on the the I have been a second to the se YEAN AIR TEMPERATURE: 72.32 F win tai · LUDTY: 0.6074" Dyn5 = 11.22 julmare = 14.70 W/ Ware 14.96

SPS-2 SHRP JI SHRP J5 SHRP J8

LEGEND

- () 8" Plain Concrete Pavement (JI and J5)

 f_f " 550 psi

 II" Plain Concrete Pavement (J8)
 - f_t = 900 psi
- 2) 6" Lean Concrete Base (J5 and J8) 6" Aggregate Base (JI)
- (3) Subgrade Compaction
- 4) Proof Rolling
- 5) 11/4" Asphalt Concrete Surface Course
- (6) 134" Asphalt Concrete Intermediate Course
- 7 5" Bituminous Aggregate Base (Jl and J5) 8" Bituminous Aggregate Base (J8)

ILLISLATE OFFIT GOLDINATIONS FOR CH (SOLDOZ

$$= \frac{(80 - (3.2)/E}{(51)} / (9.82240) = 18.57 / (6.82240)$$

$$\frac{dx}{dx} = 85 \sin \beta \sin \beta, \quad dy = 51 \sin \beta = 51 \sin \beta$$

$$\frac{dx}{dx} = 85 \sin \beta \sin \beta, \quad dy = 51 \sin \beta = 51 \sin \beta = 19.16 \mu = 31 \sin \beta$$

					و سخ اسو		and head head	, <u>-</u>		10-4 E 1	- r r	,				per!								
				N ⊢:¦								144c 244c				0.0	r«C	0.000 78.000	i×.			**		
POISSON RA	PROPERTI	POISSON RATIO THICKNESS OF TO	PROPERTIES	NO. OF NO. OF SIMMETRY COMP. 1	上 (本 (4) (4)	1 10 00 0. 1 14 12 9	- W & V & &	108	0 0 0 0 4 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. J Z ;	7 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	; ; ;			1.000	Y-COORDINATES	000	X-COORDINATES					
ON RAT	TES	NESS NESS	VE ES	OF SLADS = OF LAYERS = OF INDEX = ACTION =	212	182 192 202	152 162 172	132	102 122 122	92 92	1 0 0 i	4 2 2 C 4 7 2 2 C C	(4 C	trov.	<i>(</i> 3)	prod Dr. S. Brown	DINAI	(C) ()	DINAI	525	z	ven 11	ge	
FOI FOI	C	10F 1	유	NON = SXB	26.A	N H H 1 N 0 0 0 1	1380	777	かめい かの4	4 4 0) 7 60 4		32H 34N	0	SGON)OOKI	12.000 126.000		12.000 90.000		NO. C	NO. O	SECO	Ran J	
TIO OF BUTTOM LAYER= OF BUTTOM LAYER == BUTTOM LAYER ==	12) 12) 24)	ATIO OF TOP LAYER- OF TOP LAYER =	THE		<u></u> ۵		(- a c) の (3 4)	F	1 2 2 2 3	U U U 4	144 204	1 78 42 2 42	, 50 5 (5)		COORDINATES	00	ARE:	66	ARE:	OF NC	OF WODES	CSHOOLD BE LESS THAN (SHOOLD BE LESS THAN	: •∙• •••! •2	
	BUIT	AZYA 1 do	dO.	سد (۱ بر) سو										544		ķ				NODES	SEG	- E - E - E - E - E - E - E - E - E - E	Tandom,	
ABB FI	Š	12 12 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	LAYER:									4 (4 (4) & & 4 (4) (4) (4) (4)			F E			24.000		Z Z	H Z	SPACES		
n N	BUTTOM LAYER	0.	. jui		(A (A) (B)	N E C C C C C C C C C C C C C C C C C C		2 2 C	00 00 40 00	4 4 V) 7 & a.	 വൈനം വൈനം	J 2 F 2 C) O		EACH N	1.000		000		SLABS	Savis	His Pa	D tire,	
0		3827.			ത സ	0000 0000 1000	30 30 40	4 10 - 1 4 42.	2000 0000	1 2 3 5 1 2 6 6	9801	00 00 04 44	21.5 2 1/3 ·	⊢ <	NODE:					ALONG	ALONG	FOR T		
0.300 6.000 800¤+06		0.200 11.000 82#+07			\sim		— m —	<u>р</u> р. і ў	~ ;	i o m s	1 ~ (n .	- در در ها د جه ها ها	.1			30.000		30.000 138.000			×	1-3 121 121 121 121	2-layer, spring sub,	
900												# # 4 + + + + + + + + + + + + + + + + +				000		000		Z-AXIS	-AXIS	006 Blimia	<u>.</u>	
												36 66 36 36 36								CO	(A)		9 E	
					50	<u> </u>	9,9,90	. G G	∡ ٿ ∡	0 04 24 1	c or N	<i>ბ</i> ი ბი ბი ბ	0			36 36		180 180		Ä	Iţ	(000 3138313	SA SE For	
					215	185 195 205	1700 1700 1700 1700 1700 1700 1700 1700		5 5 5 5 5 5 5 5 5 5 5 5 5) မှာ ဆ >) ဟု ဟု ပ	ატის ისის	ტ IJ 22 t ნ ს 5 t	ո Մո			36.000		36.000 180.000		H W	~3 }	MESH	- 3 - 3	
												12 24 30								0	~	# #	<u>5</u> .	
												126 78 42				6.)		22.4				74837	kips edge,	
																2.000		42.000 222.000		0	0	· 33		
												4 G W A. 9 P P P								0	0		Load	
												12 24 30				(J		N 57 48		0	0		au rit	
					ئ ن	808	50 40 40	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	00 00 N	- യത ഗതത് ഗതത്	300	4 4 0 4 5 4 4 0 4 5	21 CA &			4.000		48.000 264.000		0	0	. دستند	x=60"	
					۲.)	8 2 4 8 2 8		سر سر نب بطر	 P.J. 1 C	်ကြောက် -	नं की ह्य	# (4 K) ##								0	٥	(And)		
												W 2 2 1				σ ₁		5.4				\wedge		
										4.		99				6.00		4.000		0	0	-	mpilia. Tenerr	
																0		0		٥	0	; ,	Marketon Application	
					20		20 00 00 20 00 00	. w . w	00 00 00 10 14 15	- - - - - - - - - - - - - - - - - - -	20 00 00 7 00 U	4 66 60 60 60 60 60 60 60 60 60 60 60 60	 			- '		150		0	0	50	Marion.	
					70 21.		00 45 A5	78				24				78.00		60.000			Å	\mathcal{O}	*one	
					8	12 日本の日の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本	126 78		108 0 108 108	0 4 C	222	126 126 128	9 9 9			Ö		ŏ			; *	3	T	
					(s.)	53 to 55		سام سام د در خان ۲		 5 to co -	J 500°	الله الله الله الله الله الله الله الله							٠		(i		Q	
												29 24 39 24 49 30				90.00		66.000			i i		and (
												0 4 4 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				00		0					ender (
					œ.	004	C) lis lis	00 64 4	an >> a			CAAC	ν &		-								monif	
					220	190 200 210	170	150	₩ ₩ ₩ ₩ ₩ ₩ ₩	0000	376	50 40 0	250									,	outh 11.2	
					50 05 35	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C) C) 60	: 55	න න ර න න ර	2 4 63 6 7 4 63 6 7 4 63 6	5 45 W 5 10 50	3000	50										Carlos .	
					922 (0) (0)		30		 	2 (1) F 2 (2) (3) F 3 (3) (3) (4)	- 25 m	80 I	90										/ V	

11111111111111111111111111111111111111	101 102 103 104 105 106 107 108 109 110 1111 1112 1113	Super	OD HOUGENOLOG	OTAL APP
.00743 .0163 .0163 .0157 .0157 .0157 .0147 .0147	0.011863 0.010518 0.008895 0.0076170 0.016170 0.015654 0.015352 0.015011 0.014656 0.0133956 0.0133956 0.012696	.01016 .00871 .00591 .01593 .01582 .01543 .01543 .01448 .01448 .01448 .01448	0.013653 0.013653 0.013567 0.013139 0.012694 0.012694 0.012694 0.012696	PRESSIRE 82.031 82.031 82.031 82.031 82.031 82.031 82.031 82.031 82.031 82.031
	0.000 0.000 0.000 0.000 0.000 0.000 0.000		X-ROTA 0.00 0.00 0.00 0.00 0.00	X1-COOR. 56.000 56.000 56.000 104.000 104.000 104.000
	00000000000000000000000000000000000000		00000000000000000000000000000000000000	X2-COOR. 64.000 64.000 112.000 112.000 112.000 112.000
	0.000037 0.000028 0.000027 0.000031 0.000031 0.000030 0.000027 0.000027 0.000023 0.000023 0.000023 0.000023	00000	Y-ROTATION 0.000000 0.0000000 0.000000 0.000000 0.000000	Y1-COOR. 8.000 21.000 85.000 98.000 21.000 85.000 98.000
				W2-COOR. 16.000 29.000 93.000 106.000 29.000 93.000 93.000
$A \sim C \sim $	1.63 2.1129 2.1339 2.2389 2.1389 2.1539 2.1632 2.1632 2.1632		STRESS 2.116 2.103 2.064 2.037 2.037 2.0968 1.968 1.968	

145.839 63.519 88.816 176.284 129.673 84.667 120.259 1153.894 146.679

163.539
175.687
148.909
60.1960
90.1160
90.1166
178.873
131.527
85.615
83.726
121.744
1151.744
1155.616
121.744
1156.64
121.76.634
1129.497
1129.497
1129.497
1129.497
1129.497
1129.497
1129.497
1129.497
1129.497
1129.497
1129.497
1129.497
1129.497
1129.497
1129.497
1129.497
1129.497

SUBGRADE FORCE

76.238 151.517 111.982 73.412 72.40 105.731 135.811 129.082 121.676

10	1.00	ب سبا	10	Q)	ထ	~1	Ø	Çn	Alis	ω	PJ	₽	NODE
0.000 11.000 11.000	0.000 11.000 11.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000	0.000 11.000 11.000 17.000	0.000 11.000 17.000	0.000 11.000 11.000	066771
\$6.107490 ~35.855987 ~7.509107	41.326343 -28.027950 -5.869728 -14.437512	-37.059612 26.431431 5.535378 12.946913	-39.522590 28.154619 5.898349 13.807364	-40.370532 28.641433 5.998206 14.103595	-41.176014 29,098426 6.093911 14.384993	-42.472781 30.065666 6.296475 14.838024	-44.380595 31.696995 6.638114 15.504526	-45.462705 32.673414 6.842600 15.882565	-46.668156 33.726208 7.063080 16.303694	-47.865309 34.751717 7.277847 16.721923	-49.626578 36.292711 7.600568 17.337229	-50.234077 36.840641 7.715317 17.549461	X-STRESS
53.581257 -33.867849 -7.092743	18.084301 -9.736525 -2.039063 -6.317818	0.925320 -3.462608 -0.725154 -0.323264	0.677026 -3.472371 -0.727198 -0.236522	-0.992620 -2.348877 -0.491911 0.346775	-2.525099 -1.319740 -0.276385 0.882153	-1.932836 -1.839161 -0.385165 0.675244	1.691378 ~4.561523 -0.955293 -0.590889	4.422711 -6.586274 -1.379324 -1.545091	7.003904 -8.513559 -1.782944 -2.446840	9.302559 -10.239241 -2.144344 -3.249883	13.110527 -13.081222 -2.739523 -4.5802;1	14.640816 -14.215725 -2.977115 -5.114823	Y-STRESS
4.197648 -3.303537 -0.691840	5.483993 -4.315817 -0.903836 -1.915822	0.000000 0.000000 0.000000 0.000000	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.000000	0.0000000000000000000000000000000000000	0.00000	0.000000	0.000000	0.000000	0.000000	0.333353 0.03330 0.03330 0.000000	M SSBBIG-AX
59.227946 -31.412058 -6.578441	42.555276 -8.769358 -1.836515 -5.888485	0.925320 26.431431 5.535378 12.946913	0.677026 28.164619 5.898349 13.807364	-0.982620 28.641433 5.998206 14.103595	-2.525099 29.098426 6.093911 14.384993	-1.932836 30.065666 6.296475 14.838024	1.691378 31.696995 6.638114 15.504526	4.422711 32.673414 6.882560	7.003904 33.726208 7.063080 16.303694	9.302559 34.751717 7.277847 16.721923	13.110527 36.292711 7.600568 17.337229	14.640816 36.840641 7.715317 17.549461	MAJ.PRINC.STRESS
50.460801 -38.311778 ~8.023409	16.855367 -28.995117 -6.072276 -14.866844	-37.059612 -3.462608 -0.725154 -0.323264	-39.522590 -3.472371 -0.727198 -0.236522	-40.370532 -2.348877 -0.491911 0.346775	-41.176014 -1.319740 -0.276385 0.882153	-42.472781 -1.839161 -0.385165 0.675244	-44.380595 -4.561523 -0.955293 -0.590889	-45.462705 -6.586274 -1.379324 -1.545091	-46 668156 -8 513559 -1.782944 -2.446840	-47.865309 -10.239241 -2.144344 -3.249883	-49.626578 -13.081222 -2.739523 -4.580211	-50.234077 -14.215725 -2.977115 -5.114823	MIN. PRINC. STRESS

Z
Ö
REACTION
FORCES
10
41999.87

HANGE OF X-STRESS AT BOTTOM OF LAYER 1: FROM RANGE OF Y-STRESS AT BOTTOM OF LAYER 1: FROM CHANGE OF MAJOR FRINC. STRESS BOT. LAYER 1: FROM RANGE OF X-STRESS AT BOTTOM OF LAYER 2: FROM RANGE OF X-STRESS AT BOTTOM OF LAYER 2: FROM RANGE OF MINOR PRINC. STRESS BOT. LAYER 2: FROM RANGE OF MAJOR PRINC. STRESS BOT. LAYER 2: FROM RANGE OF MAJOR PRINC. STRESS BOT. LAYER 2: FROM

-68.885 -52.761 -69.068 -52.579 -37.007 -29.850 -37.088

AT HODE
AT HODE
AT HODE
AT NODE
AT NODE
AT NODE
AT NODE

9001 9001 9001 1000 1000

1777777

36.841 1.635 0.000 36.841 17.549 0.882 17.549

AT NODE

DEFLECTION

* 0.016308 AND ~0.003859

AT NODE

118 221

2.528

AT NODE 118

SEECHNOE STRESS

DAY.	110	& ()	801	107	106	105	ь	103	раг О N3	
MAKINUN OR NININGN	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000	17.000
VANCES OF	50.382709 -34.786173 -7.285062 -17.601387	60.825543 -41.271320 -8.643208 -21.249629	80.114804 -53.121143 -11.124847 -27.988404	98.892546 -64.688348 -13.547298 -34.548478	105.930351 ~68.885179 -14.426216 ~37.007162	84.406647 -55.777832 -11.681221 -29.487776	16.867886 -11.965727 -2.505911 -5.892859	23.850145 -16.763739 -3.510731 -8.332137	46.577952 -30.334823 -6.352843 -16.272181	-19.601360
(COMPRESSION IS POSIT	13.905677 -6.078847 -1.273057 -4.858000	26.368491 -14.153713 -2.964128 -9.211930	51.094693 -30.282394 -6.341863 ~17.850121	74.747343 -45.686138 -9.567778 -26.113262	85.442479 -52.761280 -11.049483 -29.849648	56.330437 -33.681930 -7.053807 -19.679247	0.000000 0.000000 0.000000 0.000000	2.662165 -0.088856 -0.018609 -0.930037	36.964594 -22.769136 -4.766405 -12.913718	-)8.718811
POSITIVE):	13.5543611 2.7588813 7.2584045 7.254045	-3.932143 3.094586 0.648081 1.373709	-3,931142 3.093798 0.647916 1.373359	-3.642842 2.866907 0.600399 1.272641	-2.191757 1.724907 0.361237 0.765698	0,0000000	0.000000 0.000000 0.000000 0.000000	-3.685851 2.900755 0.607488 1.287666	-10.149739 7.987817 1.672841 3.545849	-1.466464
	50.723769 -5.810434 -1.216845 -4.738849	-13.805050 -2.891110 -9.057156	80.637898 -29.870720 -6.255648 -17.667376	99.430179 -45.263022 -9.479167 -25.925438	106.162197 -52.578817 -11.011271 -29.768651	84.406647 -33.681930 -7.053807 -19.679247	16.867886 0.000000 0.000000 0.000000	24.473023 0.401348 0.084052 -0.712433	53.001650 -17.713703 -3.709676 -10.669576	-17.628668
	13.564617 -35.054586 -7.341275 -17.720537	25.925462 -41.619983 -8.716227 -21.404403	\$0.571599 -53.532816 ~11.211061 -28.171149	74.209710 -65.111463 -13.635908 -34.736302	85.210633 -69.067642 -14.464428 -37.088158	56.330437 -55.777832 -11.681221 -29.487776	0.000000 -11.965727 -2.505911 -5.892859	2.039287 -17.253942 -3.613391 -8.549741	30.540896 ~35.390256 ~7.411572 ~18.516323	~20.691503

88
2: Tandem,
D tire,
2-layer,
spring:
Se Co
.2. F3
100 120 120 120 120 120 120 120 120 120
Loading
2
x=30"

									} *							
						111 211 311 311 411 51 101 111 111 113 113 113 113 113 113 11										
			• .			20088888888888888888888888888888888888			000		7.6					
i in	₽R	8	STEM	NO.	ON	1088 1), 000 8, 000	KY 1	1,000	×				
POISSON	Qrea ear	COMP.	SIMMETRY	्र ्र	Ом	- D B B B B B B B B B B B B B B B B B B				300 gg						
	PROPERTIES	ACTION			to.	2 112 22 32 32 32 42 52 92 10 112 113 113 114 114 20 21 20 21 12			pool	-COORDINATES		X-COODDINATE				
RATIO	30 OF		INDEX	LAYERS	LABS	00000000000000000000000000000000000000	BOOK	8	12,000	EF) 1/0	12.C	0.0	NO.	No.	SHC TOTA	Ħ 32
OF.	THE	įį	ĮI	il	ii	1 1 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	273	G M	000	ARE	0.000	ARE	Ortj	OF 1	GIB H	
TOP	TOP	-	w	2	p=i	この男と40400866268244040		COCRDINATES		••		,,	5 0 01 13	NODES	BE	Tandem,
LAYER=						22233333333333333333333333333333333333	Þ¢	OF .	604 (A 62 (B) (B)		1 2 4 2 4			SEN	TOTAL MEMORY SPACES (SHOULD BE LESS THAN	
F1 S1	LAYER:					20000000000000000000000000000000000000		EACH	000		. 000		SEARS	SLAB	ACES	Fine Fine Fine Lare
						1 1 2 4 4 4 4 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ь<	10 10 10 10			90			(A	N FOR	tire,
0.200						ತಹಳಿಕಿಲ್ಲೆ ಪಡಡಿಯ ಕ್ರಿಪ್ ಪಡೆದೆ		ts ts			<u></u>		ALONG	ALONG	7 (HE	h) i
30		1				1000 100			30.000		30.000 138.000			×		2-layer,
						20111111000000000000000000000000000000			00		000		Y-AXIS	-AXIS	JUE JUE	
						00 30 22 108 22 108 22 108 22 108 22 108 22 126 66 126 66 126 66 126 66 126 66 126 66 126 66 126 66 126 66 126 66 126 66 126 66 126 12							Ų1		EINITE ELENERT	spring
						ဝဝယာထာကတက္သေတန်နှင့်နိမ်မတီလိုက်လိုတ်ပိုင်း			ω σ		Θω. ωω.		#	II	- E.	07 60 97
						PHTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT			000		36.000 180.000		Д. W	puri ~d		ر د ان
						20000000000000000000000000000000000000									MECH *	13 P D S
						1126 1126 1126 1127					73 "		0	0	7.4	10 10
						00000044040400000000000000000000000000			42.000		42.000 222.000		0	0	80 37 7	Loading
						$\begin{array}{c} 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ $			00		000		0	0		
						00000000000000000000000000000000000000										ar X
						1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			54		264 48.		0	0		x=30*
						N & A O A A O A A O A A O A A O A A O A A O A A O A A O A A O A A A O A A O A A O A A O A A O A A O A A O A A			.000		8.000 1.000		0	0	<u> </u>	
						77 277 277 277 377 477 597 1117 1127 1137 1143 1143 1147 1167 1167 1167 1167 1167 1167 1167							0	0)
				,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			0)		יט					graduction.
••						20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			66.000		4.00		0	0	0	Course.
			,						ŏ		ō		0	\bigcirc	-L	******
						>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>							0	0	C	(/) (***********************************
						22/24/24/25/24/25/25/25/25/25/25/25/25/25/25/25/25/25/			78.		60.				00	Sugar
						0011 0013 0013 000000000000000000000000			.000		000				S.	V
																0
						22			06		<u>ق</u>				8	27
						222211111976660442302442066204220420			. 00		6.00				Ň	L
								•	0		0				1	\subseteq_{i}
																Whatevall.
						210 20 30 30 40 50 50 60 70 80 90 11 12 11 11 11 11 11 11 11 11 11 11 11										O.
						00000000000000000000000000000000000000										71
						1										

PROFESTIBS OF THE SOTTOM LAYER : POISSON RATIO OF BUTTOM LAYER=

0.300

THICKNESS OF TOP LAYER MODULUS OF TOP LAYER

= 11.000 = 0.382E+07

THICKNESS OF BUTTOM LAYER 90+3008.0 × 6.000

MUDBLUS OF SUBGRAUS REACTION 8 155.000

LOADED AREAS AS SPECIFIED WITH RESPECT TO GLOBAL COORDINATE SYSTEM:

ישי	PRESSURE	X1-COOR.	X2-COOR.	Y1-COOR.	Y2-COOR.
	82.031	26.000	34.000	8.000	16.000
	82.031	26.000	34.000	21.000	29.000
	82.031	26.000	34.000	85.000	93.000
	82.031	26.000	34.000	98.000	106.000
	82.031	74.000	82.000	8.000	16.000
	82.031	74.000	82.000	21.000	29.000
	82.031	74.000	82.000	85.000	93,000
	82.031	74.000	82.000	98.000	106.000
OTAL APPLIED LOAD IS) LOAD IS	41999.872			

70

23 C 101 D1	49	4, 00	2	.A .O	£s Un	42 42 8	43	42	in de	40	ىي ق	Ç	600)	۵/	Ş	4	ω	73	,	ROOK
HLABO	0.016316	0.017171	0.017975	0.018813	0.019691	0.020127	0.020541	0.020907	0.021399	0.021545	0.010865	0.017672	0.018554	0.019425	0.020289	0.020699	0.021076	0.021410	0.021884	0.022050	DEFLECTION
X-STRESS	0.000078	0.000067	0.000066	0.000072	0.000073	0.860071	0.000086	0.000055	0.000026	0.000000	0.000106	0.000076	0.000072	0.000073	0.000070	0.000066	0.000060	0.000051	0.000027	0.000000	X-ROTATION
Y-STRESS	-0.000038	-0.000040	-0.000043	-0,000044	-0.000045	-0.000046	-0.000046	-0.000046	-0.000046	-0.000046	-0.000024	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	Y-ROTATION
XY-STRESS MA	?. ₅	2.662	2.78	2.916	3,05	3.120	3.16	3,241	3.317	3-339	1.68	2.739	12.00元の	₩.O.	3.145	3.208	3.267	3.319	3.392	3.418	SUBGRADI
MAJ.PRINC.STRESS	529	50	80	16	(J)	20	A.	Alta Luid	<i></i> ,	39	4,	39	70	juore juore	45	08	67	19	90		SUBGRADE STRESS
SS MIN.PRINC.STRES	225.157	191,546	200.586	209.943	163.663	112.269	14.567	175.618	238,455	120.081	144.142	197.071	206.941	216.647	168.641	115.437	117.553	179.802	243.923	122.878	SUBGRADE FORCE

2

0.000 11.000 11.000 17.000

33.153846 -18.780301 -3.933047 -11.582419

63.468514 -42.637863 -8.929395 -22.172961

0.000000

63.468514 -18.780301 -3.933047 -11.582419

33.153846 -42.637863 -8.929395 -22.172961

0.000 11.000 11.000 17.000

32.192025 -19.057180 -3.991032 -11.246403

50.768506 -33.676821 -7.052737 ~17.736166

0.000000

50.768506 -19.057180 -3.991032 -11.246403

32.192025 -33.676821 -7.052737 -17.736166

0.000 11.000 11.000 17.000

33.738035 -18.890883 -3.956206 -11.786508

67.498570 -45.460334 -9.520489 -23.580876

0.000000 0.000000 0.000000 0.000000

67.498570 -18.890883 -3.956206 -11.786508

33.738035 -45.460334 -9.520489 -23.580876

iles Garage

63 64	5~4	. <u>4</u> .0	3 0	CA CD	N Ø	.J	17	رن رسا	, (1)	∀ 27 ⊢.	Çı	<i>ა</i> ක
0.000 11.000 11.000 17.000	0.000 11.000 11.000	0.000 11.000 11.000	0.000 11.000 17.000	0.000 11.000 11.000 17.000	0.900 11.000 11.000 17.000	0.000 31.000 31.000 17.000	0.000 11.000 11.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000	0.000 11.000 11.000 17.000	0.000 11.000 17.000
103.816404 -67.467487 -14.129317 -36.268647	110.449279 -71,230626 -14.917409 -38.585866	88.804796 -57.985370 -12.143533 -31.024286	68.992747 -44.960722 -9.415858 -24.102872	77.348035 -49.372636 ~10.339819 -27.021823	83.328840 -52.748932 -11.046897 -29.111240	80.538583 -51.913462 -10.871929 -28.136453	40.510085 -25.424442 -5.324491 -14.152349	41.112513 -25.013813 -5.238495 -14.362809	43.947141 -26.089010 -5.463667 -15.353097	46.701619 -27.913567 -5.845773 -16.315384	32.311165 -20.620178 -4.318362 -11.288026	32.173126 ~19.743737 ~4.134814 ~11.239801
84.305877 -52.112755 -10.913666 -29.452571	96.925833 -60.587711 -12.688526 -33.861400	68.500906 -42.006263 -8.797123 -23.931046	54.385559 -33.464905 -7.008357 -18.999797	74.622771 -47.227860 -9.890651 -26.069742	86.225313 +55.028449 -11.524282 -30.123134	71.037455 -44.436100 -9.305989 -24.817199	44.816263 -28.813393 -6.034218 -15.656728	55.905460 -36.655823 -7.676612 -19.530780	68.342479 ~45.288075 -9.484414 -23.875699	70.123439 -46.346476 -9.706068 -24.497884	31.233739 -19.772247 -4.140785 -10.911623	41.518146 -27.098243 -14.50825
0.318176 -0.250403 -0.052441 -0.111156	0.141842 +0.111630 -0.023378 -0.049553	0.000000 0.000000 0.000000 0.000000	-5.696332 4.482998 0.938898 1.990035	-3.570120 2.809675 0.588414 1.247235	-1.283860 -0.268871 -0.569971	0.000000	-4.733839 3.725519 0.780213 1.653784	-3.356747 2.641751 0.553246 1.172692	0.232166 ~0.182714 -0.038265 ~0.081108	0.000000	0.000000 0.000000 0.000000 0.000000	0.00000 0.00000 0.00000 0.00000
103.821592 52.108673 10.912831 29.450759	110.450767 -60.586540 -12.600281 -33.860080	88.804796 42.006263 8.797123 23.931046	70.951479 -31.923388 -6.685526 -18.315507	79.806728 -45.292876 -9.485419 -25.210789	86.958512 -52.171907 -10.926054 -28.855094	80.538583 -44.436100 -9.305989 -24.817199	47.863657 -23.026151 -4.822231 -13.087730	56.631521 -24.442405 -51.118828 -14.119157	68.344688 -26.087271 -5.463303 -15.352325	70.123439 -27.913567 -5.845773 -16.315384	32,311165 -19.772247 -4.140785 -10.911623	41.518146 -19.743737 -4.134814 -11.239801
84.300690 67.471570 14.130172 -36.270459	-71,231797 -71,231797 -14,917654 -38,586386	68-500906 ~57-985370 -11-143533 -31-024286	52.426027 -46.502239 -9.738689 -24.787163	72.164078 -51.307621 -10.745051 -27.880777	82.595642 -55.605474 -11.645125 -30.379279	71.037455 -51.913462 -10.871929 -28.136453	37.462690 ~31.211684 ~6.536478 -16.721347	40.386452 -37.227231 -7.796279 -19.784432	43.944932 -45.289814 -9.484778 -23.876471	46.701619 -46.346476 -9.706068 -24.497884	31.233739 ~20.620178 ~4.318362 ~11.288026	32.173126 -27.098243 -5.675025 -14.504518

170	ф Ф	 	. 40	Li UJ NO	 	137	; (ω σγ	13 13 13 13 13 13 13 13 13 13 13 13 13 1	نب ن هانه	1 3		kud Cud Jud	.25. 1,18
0,000	0.000 11.000 11.000	0.000 11.000 11.000	0.000 11.000 11.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000	0.000 11.000 11.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000	0.000 11.000 11.000 17.000	0,000 11.000 11.000 17.000	0.000 11.000 11.000	0.000 11.000 11.000	0.000 11.000 11.000
-38.151332	-9.110925 6.356156 1.331132 3.182935	-10.453349 7.629928 1.597891 3.651916	86.758117 ~56.716876 ~11.877880 ~30.309271	51.969335 -35.505640 -7.435736 -18.155680	38.794620 -27.326130 -5.722750 -13.553045	28.762066 -27.425831 -5.743629 -13.541672	49.060497 -33.846129 -7.088194 -17.139467	60.187536 -40.805410 -8.545636 -21.026739	79.262275 -52.467448 -10.987947 -27.690570	97.604031 63.657814 -13.331479 -34.098331	104.596604 -67.845219 -14.208423 -36.541212	95.198634 -56.292083 -11.788918 -29.764459	85.310678 -56.190742 -11.767695 -29.803602
4.754552	0.000000	2.566370 -2.616556 -0.547970 -0.896571	66,024999 -40,399968 -8,460726 -23,066079	19.312363 -9.804691 -2.053338	3.560505 0.403024 0.084403 -1.243876	1.936973 1.555418 0.325742 -0.676689	13.899370 -6.174416 -1.293071 -4.855797	26.528125 -14.315545 -2.998020 -9.267699	51.719346 30.791238 -6.448427 -18:068346	76.253583 -46.855069 -9.812580 -26.639472	86.648113 -53.719805 -11.250221 -30.270840	56.979396 -34.083619 -7.137931 -19.905964	59.371816 -35.776927 -7.492550 -20.741765
0.000000	0.0000000000000000000000000000000000000	13.995011 -11.014036 -2.306604 -4.889209	7.951196 -6.257570 +1.310486 -2.777780	6.972842 -5.487608 -1.149237 -2.435988	7.316109 -5.757758 -1.205813 -2.555910	8.253495 -6.495478 -1.360310 -2.883389	8.846375 -6.962073 -1.458026 -3.090514	8.718954 -6.861793 -1.437025 -3.045999	8.120757 +6.391014 -1.338432 -2.837017	6.967590 -5.483475 -1.148372 -2.434154	3.672731 -2.890429 -0.605325 -1.283082	0.000000	0.495025 -0.389584 -0.081588 -0.172939
4.754552	0.000000 6.356156 1.331132 3.182935	11.491490 14.653973 3.068895 6.769940	89.456284 -38.276517 -8.016025 -22.123464	-8.682029 -1.8182226 -248488	40.253363 1.551051 0.324827 -0.734258	40.527281 2.944637 0.616678 -0.6600005	51.160751 -4.521522 -0.926916 -4.122065	-12.643626 -2.643626 -8.525280	61.478303 -29.047230 -6.083189 -17.294168	99.676659 45.223916 9.470977 25.915392	105.319061 -53.151233 -11.131148 -30.0184447	85.198634 ~34.083619 ~7.137931 ~19.905964	85.320122 35.769485 7.490994 20.738465
-38,151332	-9.110925 0.000000 0.000000 0.000000	-19.378469 -9.640602 -2.018974 -4.014595	63.326832 -58.840326 -12.322581 -31.251885	17.885851 -36.628301 -7.670848	2.101762 -28.474156 -5.963174 -14.062662	0.171759 -28.815050 -6.034565 -14.158356	11.799116 -35.499022 -7.434350 -17.873198	24.403698 -42.477329 -8.895776 -21.768916	49.503318 -54.211457 -11.353185 -28.464748	74.180955 65.288967 -13.673082 -34.822411	85.925656 -68.413791 -14.327495 -36.793605	56.979396 -56.292083 -11.788918 -29.764459	59.362372 -56.198174 -11.769251 -29.806902

 11.000
 27.497767
 -6.269048
 0.00000
 27.497767

 11.000
 5.758695
 -1.312890
 0.00000
 5.758695

 17.000
 .13.328310
 -1.661021
 0.000000
 13.328310

 0.000
 -37.483931
 4.093005
 3.274832
 4.349368

 11.000
 26.972967
 -5.747969
 -2.577284
 27.174725

 11.000
 5.648789
 -1.203763
 -0.539745
 5.69142

 17.000
 13.095151
 -1.429906
 -1.144075
 13.184712

-37.740294 -5.949727 -1.246016 -1.519468

-6.269048 -1.312890 -1.661021

iesă Sai jout

MAKINIM OR MINIMUM VALUES OF (COMPRESSION IS POSITIVE):

DEFLECTION	AND	= 0.022050 AND -0.003086		AT NODE	2224						
SUBCRADE STRESS	11	00 ,£a 1-1 00		AT NODE							
RANGE OF X-STRESS AT BOTTOM OF LAYER I: I	FROM	-71.231	AT	NODE	41	P O	27.498	~ 3	NODE	170	
TANGE OF Y-STREES AT BOTTOM OF LAYER 1: 1	FROM	-60.588	TP (TP	NODE	~ .,	TO	1.555	P	NODE	137	
LAYER 1:	FROM	-71.232	AT	KOUN th	## 	TO	9.000	AT.	MODE	0	
LAYER 1:	FROM	-60.587	Æ	RODE	4 <u>1</u>	TO	27.498	Ä	MODE	170	
LAYER 2:	FROM	-38.586	ÄΤ	NODE	41	Ö	13.328	Fig.	RODE	170	
LAYER 2:	FROM	-33.861	ÄΤ	NODE	ندرا درا	T°	1.107	5	MODE	بــر 80 30	
LAYER 2:	FROM	-38.586	13	3000	F-4	TO	1.107	ř	AT NOUE	183	
DATER 2:	FROM	-33.861	29		4	7	13.328	<u>-3</u>	RODE	170	

SUM OF REACTION FURCES = 41999.87

Try of the state o LE MARION OF BUT THE HELD SEED These of the over the state of Memoritation of the second contract of the se = 119-3 n. 3 ave = 189 1/2-1 F. P. Park And the same $\langle x, p \rangle$ Frank Jan 15 The good Company of the Compan 7. 10. Topics Labres PC1 Typ= 8.412 ps1

.

שי R E U I C Н ¥ V tri U [F] ŝ F G N ď ROCEDURES

∨ 191 S ₩, (/s

A PROBABILISTIC PREDICTIVE MODEL FOR PAVEMENT AND AXLE DESIGN

LATEST REVISION: 12/01/87 BY MIT

```
INPUT DATA VALUES FOR RUN
                                                                                                                                                                                                               .00005+00
>>>> NLAYER
>>>> THICK
       LAYER
...7400E+00
>>>> GNU
                                             .7700B+02
                                                                                                                                                                      .7000E+01
>>>> LOADING .10
>>>> RADIUS .60
>>>> ZCRACK .70
>>>> NTEMPS
.52008+00
                                                                                                                                                                                                                                                                                                                       >>>> TYPE
                                .70005-01
>>>> ALPHA I
                                                                                                                                                                                                                                                        .0000±+00
                                                                                                                                                                                                                                                                         >>>> NRPOINTS
                                                                      >>>> TEMPS
                                                                                       .1000E460
                                                                                                         >>>> VARCOEF
                                                                                                                           >>>> LAYER
                                                                                                                                            >>>> LAYER
                                                                                                                                                              >>>> LAYER
                                                                                                                                                                                                                                               >>>> SPOINTS
                                                                                                                                                                                                                                                                                                     >>>> TITLE
                                                                                                                                                    .2000E+06
                                                                              .3300£+00
                                                                                                                .30005+04
                                                                                                                                  .38001+05
                                                                                                                                                                                .4000E+01
.1050E+03
.6965E+01
.7000E+01
                 LAYER 2
                                                     NEYAL
                                                                                                                                                                                                                                                                                                    "ITPP Data Test Run 1 OH Pavement
                                                                                                                                                                                                                                       .7000E+01
                                                                                                                                                                                                                                                                 .6000E+01
                                                                               .38005+00
                                                                                                  .1500E+00
                                                                                                                                                                                                                                                                                    w
                                                                                                                                                                                                                                                                                                                                                             ب
LTPP Data Test Run 1 OH Pavement
                                                                                                                                                                                                                                                                  .1000E+02
                                                                                                                                                                                                                                       .1909E+02
                                                                                .4000E+00
                                                                                                  .15002+00
                                                                                                                                                                                                             .0000E+01
                                                                              .4000E+00
                                                                                                 .2000E+00
```

LAYER 3 .7500E+00 LAYER 3 ,2000E-01 >>>> ALPHA

>>>> ALPHA

LAYER

2

.4000E-01 >>>> ALPHA

LAYER 4

VERTICAL COMPRESSIVE STRAIN ON TOP OF SUBGRADE = .968260E-03	KEAN
OF SUBGRADE = .5	TCAL
OF SUBGRADE = .5	COMPRESSIVE
OF SUBGRADE = .5	STRAIN
OF SUBGRADE = .5	Q N
OF SUBGRADE = .5	TOP
SUBGRADE = .5	Ç
, co	to
.968260E-03	II
	.968260E-03

	R Z	R Z	SOLUTION NUMBER SEASON NUMBER RADIUS NUMBER 7.00 .330 4.00	>>> BETA .1130E+00 REFTEMPC .700 >>>> VSREED .300 DORCOEF1 .2000E+01 DURCOEF2 .1000E+01 >>>> LAYERRUT	.7500E+C >>>> NTSTATIC >>>> TSTATIC .1000E+C .1000E+C .3700E+C
LAYER 1 2 3	WEAN VER NEAN VER NEAN VER NEAN VER NEAN VER NEAN VER NEAR VER NEA	WEAN MEAN 10500E+03 47428E+02 14953E+02 29621E+01	. 150	2+00 .7000 .3000 2+01 2+01 g-06 g-06 creer creer -06 2-06	.7500E+00 I1 PATIC .1000E-02 .3000E-0 .1000E+03 I EB 1 .300E-06 .5200E-0
DEFORMATION MEAN .148150E-02 .124645E-02 .389887E-02	DISPLA RETICAL DEVIATION .73854E-02 .73983E-02 .73650E-02 .72366E-02	ERTICAL DEVIATION	ļ. 	.00	-02 .
DEVIATION .194216E-03 .1543325E-03 .723660E-02	A C E M E N MEAN 2 .000005 2 .000005 2 .000005	MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN	CONTACT RADIUS CONTACT PRESSURE 10 TOTAL WHEEL LOAD1600 VEHICLE SPEED	.1130 .2000 .1000 .1000 .17ER 1 .3761 .1441	1000E-01 .3000E-01
AXIS ZCR	DEVIATI 200000.	STR TANGENTIAL DEVIATION DEVIATION +03 .77344E+01 +02 .98756E+01 +02 .12692E+02 -01 .41147E-01	6.97 105.00 16002.25	5544E-	.1000 5 +
OF LOADIN FAT ACK MEAN 00 .117498E-03	NA ON MEAN +0035530E-03 +00 .11750E-03 +00 .29274E-03 +00 .38062E-03	P. E. S. S. E. S. MEAN MEAN 16300E+03 -0113442E+02 -0271623E-01	LAYER 1	05 - 6658E-05	00 .3000E+00
	DIAI	. 1	38000. 3000.	5 .1900E-04	1000E+01
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	W 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 1 1	POISSON400400	. 8620Б-05	.3000E+01
	TANGENTIAL TANGENTIAL MEAN DEVI .35530E-03 .526 .11750E-03 .510 .29274E-03 .944	SHEAN SHEAN	THICKNESS	1203E-04 * * * *	.1000E+02
	TTAL TTAL TTAL TTAL TTAL TTAL TTAL TTAL	R R DEVIATION KTG 	YARCOEF	* * * * * * * * * * * * * * * * * * *	.3000E+02
·	· V		1 0 0	* * * * *	•

209857. 200000.

ddan
Data
Test
Run
\vdash
9
Pavement

1 A C Q		.10573E+00	+000	HHH1	ŀ	46152E+02 25520E+01 .15575E+02	₩ ₩ I	- 72484E+02 - 90281E+01 .17974E+02	.00000E+00 .40756E+00	46296E+01 95065E+01 25186E+01		10.00
1	1 (1 (MEAN		DEVIATION	MEAN	DEVIATION	MEAN	DEVIATION	1 12	34	ສ
NATAX NATAX	SHEAR	SHEA	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 (-	ALLMACNAL		40 40 40 40 40 40 40 40 40 40 40 40 40 4	•	
	\$\begin{array}{cccccccccccccccccccccccccccccccccccc	\$; ;	* * * * * * * * * * * * * * * * * * *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n	Ø → □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □					
8.00 .150 INFINITY .200	INFINITY 8.00	E S	00	.400 .400	38000. 3000.	८ क				.150	4.00	.380
THICKNESS VARCOEF		THICK	1 450	NOSSIOG	SOTINGE	LAYER		RADIUS 6.97 ESSURE 105.00 IL LOADI6002.25 LE SPEED 30.00	CONTACT RADIUS CONTACT PRESSURE TOTAL WHEEL LOAD! VEHICLE SPEED	.100	N NUMBER N NUMBER S NUMBER 7.00	SOLUTION SEASON RADIUS
.33745E-03 .46854E-04 4 .94120E-04 .37358E-04 4 .35981E-03 .98316E-04 4				I	.39099E-04 .31310E-04 .92808E-04	.25458E-03 .49438E-04 .32032E-03	.14083E-03 - .11623E-03 .16746E-03	20247E-02 .1 .56472E-03 .1 .21588E-02 .1 Run 1 OH Pavement	.73248E-02 .73467E-02 .71990E-02 LTPP Data Test	.54564E-01 .53823E-01 .49641E-01	7.00	6.00
TANGENTIAL MEAN DEVIATION KTG	1 1 Z	1 1 Z			RADIAL DEVIATION	MEAN	DEVIATION	RADIA MEAN D	ENTICAL	VERU VERU	2 3	w
	-	-		RAIN	S -		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CEMENTS	DISPLA			
.27030E:02 .77446E-01 4			3270	1 1 1	.58411E+01 .60118E+01 .27792E+01	.12426E+03 .49538E+01 .19169E+02	.65433E+01 - .73141E+01 .29145E+01	13734E+03 13734E+02 .12004E+02 .20241E+02	.00000E+00 .10921E+01 .36346E+00	77314E+02 28432E+02 28432E+02 27492E+01	7.00	6.00 6.00
MEAN DEVIATION KTG	SHEAR DEVIATION	SHEA	į	· !	RADIAL DEVLATION	PAI MEAN	DEVIATION -	TAMOEN MEAN	VERTICAL DEVIATION	VERT	12	; ox
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	i i i i	F 1 5 5 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SES	STRES				1 	
400 8.00 .150 400 INFINITY :200	1	1	400	1 1 1	38000.	 				50	4.00	.380
N							•	E SPEED 30.00	VEHICLE	, 1 ()	· · ·	. 330
SON THICKNESS VARCOEF	THICKNESS		SON	POISSON	NODULUS	LAYER		CT RADIUS 6.97 PRESSURE 105.00 HEEL LOAD16002.25	CONTACT RI CONTACT PRES TOTAL WHEEL	· · · · · · · · · · · · · · · · · · ·	NUMBER NUMBER	SOLUTION SEASON RADIUS
********	******	*					ant	Run 1 OH Pavement	LTPP Data Test	*****	*******	
0620 .0000 .0000 2 .2565 .0309 .0000 5 .4154 .1185 .0000 1302 .0241 .0000	.0620 .0000 .2565 .0309 .4154 .1185 .1302 .0241	 	1 101100	.3069	.7128	.9214 000 .9579 000 .9758 00 .9500	.12465E-02 1.0000 .38989E-02 1.0000 .50510E-01 1.0000 11750E-03 1.0000	7,00	LAYER LAYER LAYER 	CR	C C C	
1.0000 .9777 .5002 .0000		1.0000		15E-02	1 . 148	LAYER		1	DEFORMATION: :	DEFOR	5 5 5 7)))
24.0 48.0 96.0	4.0 48.0 9	4.0		12.0	6.0	3.0	VALUE .0	AXIAL-VALUE	! !			
*		# # # # # # # # # # # # # # # # # # #	4	L OFFSET	RADIAL	4	; ! ;			لما لــ	NUMBER	SEASON RADIUS
FUNCTION VALUES	ION VALUES	ION VALUES	1		RADIAL INFULENCE	21111111111111111111111111111111111111	!			I poé	NCW BD	SOLUTION

10.00 10.00 10.00	יכו! יכו!		
.00 7.00 19.00 Program	Z		
.50903E-01 .51310E-01 .48170E-01 terminated.	MEAN		
.69544E-02 .69902E-02 .68326E-02			। ह । ।
26554E-02 .61982E-03 .33557E-02	MEAN		
.19077E-03 .14683E-03 .27585E-03		I A E	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
.98661E-0 .11408E-0 .24717E-0	MEAN	RAI	 1 1 1 1 1 1 1 1 1
24894E-0 13932E-0 78657E-0		RADIAL	STRA
6554E-0 1982E-0 3557E-0	MEAN	TANG	A I N S
49E-0 64E-0 35E-0	DEVIATION	TANGENTIAL	
各年年	KTG		

÷

The seal Thus) S. 10 10 7 3 8 = rr. (=30) Temperature = 6°C +37208e.004 The law Torne Arta I was the second of the 1 1 1 1 1 1 1 1 1 1 1 1 1 (2 3/65)

els = (69.56 + 4.96.3.12) = 12.1/10= 0.382 × 10? I have produced the Till produced to the first Comment of the second of the s

T W	S
7000	oupud oupud
N N	C
D.	0

NAHI SSAT AB (TOTAL MEMORY SPACES FOR THE FINITE ELEMENT MESH=
	74837

NO. OF NODES IN SLABS ALONG Y-AXIS NO. OF NODES IN SLABS ALONG X-AXIS ij П 17 13 0 0 0 0

X-COORDINATES ARE:

0.000 120.000	Y-COOR	0.000
12.000 132.000	ORDINATES ARE:	24.000 110.000
24.000 144.000		48.000 116.000
36.000		60.000 140.000
48.000		66.000 152.000
. 60.000		72.000 164:000
72.000		80.000 180.000
84.000	·	86,000
96.000		92.000
108.000		98,000

COORDINATES OF EACH NODE:

J	c)	N	N	<u>,</u>	<u>_</u>	سر	مبر	j	guna.	ęt	دسر		سر سر				_				K 1	 >		
																		51 6						
																		60 1						
	44	24	60	96	32	12	48	84	20	0	36	72	80	D.	24	00	96	132	12	48	94	20	0	
		21	20	F ©	18	17	16	15	14	بير	12:	دىر دىخ	10:	9	00	7.	9	52	Δ	ω	Ŋ	1	6.3	
																		2 60						NODE
																		0 144						
		S)	N	CO	,£S	4	0	σ'n.	10	<i>V</i> 3	80	<i>.</i> 45.	0	0	O)	2	w		#7	Ų	OI	10	10	×
																		s S						<i>-</i> • • • • • • • • • • • • • • • • • • •
																		9						
		48	84	120	0	36	72	108	144	24	60	96	132	12	20	84	120	0	S	72	108	144	24	144
		12	2 C	<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u> ≃	++ -7	<i>ال</i>	15	14	دسم لیا	12	11	10	و	00	-,	9	54 4	,£is	w	(1	┙		
																		4 66						
																		6 12						
		0	O)	2	2	00	Ţ.	0	0	O,	2	co	4	4	0	Q)	2	2	8	.E.s	0	U	ov.	
		215	205	195	185	175	165	155	25 17 17 17	135	125	115	105	95	ω (Л	75	Q)	S	45	ω G	25	15	ഗ	
		180	164	152	152	140	116	110	110	104	86	92	92	9	80	72	9	99	60	48	24	24	0	
		72	108	144	24	90	96	132	12	41s 000	20	120	0	φ. (J)	. 72	108	144	24	60	96	132	12	48	
		2	2(19	18	ىب		⊢	14	Lu (u)	سم د ۸	اسم است :	<u>_</u>	ıa	· თ	1	on.	56	4	w	2	4		
																		6 6 6						
																		6 36			نــه			
		42	0	0	Q	2	တ	4	£.	0	9	, N	- 2	00	u dia	0	0	₫,	2	œ	4	4	0	
		217	207	197	187	177	167	157	147	37	123	111/	107	- 97	6	1.1	67	57	47	37	27	_ [,	
		180	164	164	152	140	116	911	110	104	98	26	92) a	000	7.7	72	99	60	44.00	48	24	0	
		96	132	بر 22	48	. 00	120	0	36	72	80.T	144	. Z	00	i ui	E GS	12	4.00	84	120	0	ω . 6	72	
		2	2	سو	· post	٠ ــــ	<u> </u>	سو	lung		<u> </u>	, p.,	: <u>;</u>					(()		1				
																							ω	
																							0 84	
		8	44	24	Ö	96	32	7	9	4	Ċ	<i>-</i>	o or	Z	ă	4	.ib	Ö	9	2	2	8		
		219	209	199	189	179	169	159	149	200	129	¥ .	60T	9 9	000		1 O G	59	4.9	9	120	19	. 9	
																							. 0	
																							, o	
		(c)	N2	2			_	درم		_	· -	· -	۰.	{ د	,									
																							10	
		80 1	0.8	64	. 52	40 1	.A. O	100	10	4	± 86	0 00	, <u>C</u>	00	7 78	α	2.5	000	60 1	60	Δ.	24	0 1	
		32	<u>}</u>	8	00 44.	· 20	0	ω σ	72	80	42	. 4	00	1 15) L.	سو ر ن۸ (000	. œ .4.	20		ι. (Φ	12	108	

SYMMETRY INDEX =

NO. OF SLABS =

ωΝ

COMP. ACTION =

PROPERTIES OF THE TOP LAYER:

POISSON RATIO OF TOP LAYER-

MODULUS OF TOP LAYER

≈ 0.382E+07

0.200

THICKNESS OF TOP LAYER

PROPERTIES OF THE BUTTON LAYER :

POISSON RATIO OF BUTTOM LAYER = 0.300
THICKNESS OF BUTTOM LAYER = 0.800E+06

MODULUS OF SUBSMADE REACTION - 155.000

LOADED AREAS AS SPECIFIED WITH RESPECT TO GLOBAL COURDINATE SYSTEM:

PRESSURE 66.667 66.667 66.667 66.667 66,667 66,667 66.667 66.667 X1-COOR. 133.500 133.500 133.500 133.500 85.500 85.500 85.500 85.500 X2~COOR. 141.000 141,000 141.000 141.000 93.000 93.000 93.000 93.000 Y1-COOR. 104.000 104.000 27.000 14.000 91.000 27.000 14.000 91.000 Y2-COOR. 112.000 112.000 99.000 35.000 22.000 22.000 99.000 35.000

TOTAL APPLIED LOAD IS 32000.160

= MAKA SCYNDERS

1:0	109	108	107	106	105	104	103	102	101	100	99	36	97	96	95	94	93	92	16	90	NODE
0.009516	0,009907	0.010328	0.010844	0.010801	0.010836	0.009883	0.006490	0.007115	0.007703	0.006154	0.008468	0.008756	0.009083	0.009462	0.009859	0.010170	0.010320	0.010152	0.005476	0.006074	
0.000030	0.000034	0.000033	0.000020	0.000006	0.000000	0.000049	0.000052	0.000052	0,000044	0.000031	0.000023	0.000025	0.000030	0.000033	0.000032	0.000019	0.000006	0.00000	0.000049	0.000050	X-ROTATION
0.000069	0.000070	0.000071	0.000072	0.000074	0.000076	0.000065	0.000067	0,000069	0.000073	0.000075	0.000074	0.000074	0.000075	0.000078	0.000080	0.000085	0.000086	0.000085	0.000070	0.066072	Y-ROTATION
1.475	1.536	1.600	1.650	1.674	1.680	0.912	1.006	1.103	1.194	1.264	. L. W	1.357	1.408	1.467	1.528	1.576	1.600	1.604	0.849	0.941	SUBGRADE STRESS
106.206	110.549	115.055	118.600	120.400	60.417	33.820	72.423	79.351	85.809	90.840	94.460	97.720	101.380	105.579	109.919	113.320	115.034	57.721	36.520	78,499	SUBGRADE FORCE

9 3	92	Q		w	, N	bost	RCOR	THE SUM OF	196 197 198 199 200 200 200 200 200 200 200 200 210 211 211	
0.000 11.000 11.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	000.11 000 17.000 000.0	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	DEPTH	F REACTION FORCES	0.012381 0.012322 0.012145 0.011860 0.011505 0.011751 0.010771 0.009483 0.009483 0.009348 0.012056 0.011998 0.011830 0.011245 0.011245 0.011245 0.010515 0.010523 0.009705 0.009705 0.0097106 0.009234 0.009234 0.009234 0.0097565	
53.564218 ~35.341718 -7.401407	42.613624 -28.704475 -6.011408 -14.887228	-50.984262 35.576562 7.450589 17.811541	-52.231862 36.473123 7.638350 18.247395	-53.264963 37.248191 7.800668 18.615300	-54.011269 37.790857 7.914316 -18.869038	-54.274583 37.988928 7.955797 18.961027	X-STRESS)ES IS 32000.160	0.000032 0.000032 0.000032 0.000032 0.000032 0.000033 0.000048 0.000048 0.000029 0.000029 0.000031 0.000031 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000033 0.000048 0.000048	
36.470457 -21.886974 -4.584078	21.244606 -11.887116 -2.489448 -7.421882	-9.115455 2.625924 0.549932 3.184518	-8.995032 2.445854 0.512221 3.142448	-8.651823 2.122031 0.444404 3.022547	-8.307888 1.822419 0.381659 2.902392	-8.165574 1.701262 0.356285 2.852674	Y-STRESS		-0.000021 -0.000021 -0.000018 -0.000014 -0.000014 -0.000016 -0.000016 -0.000016 -0.000016 -0.000016 -0.000015 -0.000015 -0.000015 -0.000015 -0.000015 -0.000015 -0.000015 -0.000015 -0.000015 -0.000015 -0.000015 -0.000015 -0.000015	
1.716934 -1.351223 -0.282979	0.000000 0.000000 0.000000	0.000000	0.000000	0.000000 0.000000 0.000000	0.000000 0.000000 0.000000	0.000000	XY-SIRESS MA		11. 11. 11. 11. 11. 11. 11. 11. 11. 11.	
53.734965 -21.754596 -4.555936	42.613624 -11.887116 -2.489448 -7.421882	-9.115455 35.576562 7.450589 17.811541	-8.995032 36.473123 7.638350 18.247395	-8.651823 37.248191 7.800668 18.615300	-8.307868 37.790857 7.914316 18.869038	-8.165574 37.988928 7.955797 18.961027	NJ.PRINC.STRESS		919 919 888 888 783 666 470 470 385 294 470 201 201 201 201 201 201 201 20	
36.299710 -35.476095 -7.429549	21.244606 -28.704475 -6.011408 -14.887228	-50.984262 2.625924 0.549932 3.184518	-52.231662 2.445854 0.512221 3.142448	-53.284963 2.122031 0.444404 3.022547	-54.011269 1.822419 0.381659 2.902392	-54.274583 1.701262 0.356285 2.852674	S MIN.PRINC.STRESS		160.764 319.999 315.421 308.109 298.982 289.193 279.433 279.433 269.558 278.777 246.320 232.125 216.864 102.995 90.349 179.833 179.833 179.833 179.833 179.833 179.833 179.833 179.833 179.833 179.833 179.833 179.833 179.833 1183.463 157.521 151.756 145.489 138.439 138.439 138.439 138.439	
									•	

173	172	171	170	3 14	اب ب ب	108	107	106		100	96	യ ഗ്ര	94	
0 .000	0.000 11.000 11.000 17.000	0.900 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 A1.000 11.000 17.000	0.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	0.000 11.000 11.000 17.000	17.000
56.899324	69.640644 -45.510843 -9.531067 -24.329218	61.050757 -40.301115 -8.440024 -21.328309	50.500576 -34.043662 -7.129563 -17.642564	59.859575. -39.086234 -8.185599 -20.912165	-39.891696 -8.354282 -21.299526	55.768717 -37.134537 -7.776866 -19.483008	68.865900 -45.187776 -9.463409 -24.058558	59.502575 -39.359014 -8.242725 -20.787446	54.258550 -35.283970 -7.389313 -18.955426	55.231852 -35.991831 -7.537556 -19.295453	30.106154 21.112971 4:421565 10.517697	49.934031 -33.149792 -6.942365 -17.444639	62.263947 -40.694442 -8.522396 -21.752141	-18.712859
35.175992	53.206055 -32.576866 -6.822380 -18.587733	41.306559 ~24.762484 -5.185861 -14.430600	24.825744 -13.837639 -2.897935 -8.672966	46.163838 -28.307726 -5.928320 -16.127508	45.942484 -28.066366 -5.877773 -16.050178	33,501022 -19.609921 -4.106790 -11.703706	50.192727 -30.492039 -6.385767 -17.535016	39.203312 -23.383548 -4.897078 -13.695823	43.760303 -27.021878 -5.659032 -15.287824	43.555105 -26.802263 -5.613039 -15.216138	3.994484 -0.563157 -0.117939 -1.395488	31.312526 -18.494718 -3.873239 -10.939147	47.512822 -29.085345 -6.091172 -16.598781	-12.741090
4.808419	1.114186 -0.876861 -0.183636 -0.389245	-2.260075 1.778673 0.372497 0.789566	0.0000000000000000000000000000000000000	-0.765985 0.602828 0.126247 0.267600	-2.703024 2.127272 0.445502 0.944311	-0.321102 0.252706 0.052923 0.112178	-2.499670 1.967233 0.411986 0.873269	-4.135273 3.254449 0.681560 1.444673	-4.354279 3.426806 0.717656 1.521183	-0.479363 0.377258 0.079007 0.167467	-5.404739 4.253515 0.890788 1.888165	-7.553521 5.944600 1.244943 2.638851	-3.083549 2.426745 0.508219 1.077249	-0.599817
57.916070	69.715836 -32.517690 -6.809987 -18.561464	61.306159 24.561483 5.143766 14.341374	50.500576 -13.837639 -2.897935 -8.672966	59.902282 -28.274115 -5.921281 -16.112588	61.439826 -27.695330 -5.800069 -15.885472	55.773346 -19.606278 -4.106027 -11.702089	69.194726 -30.233254 -6.331572 -17.420139	60.312665 -22.746009 -4.763562 -13.412815	55.829473 -25.785565 -5.400118 -14.739016	55.251498 -26.786802 -5.609801 -15.209274	31.180642 0.282462 0.059154 -1.020111	52.612682 ~16.386627 -3.431754 -10.003351	62.882583 -28.598481 -5.989211 -16.382658	-12.681439
34.159246	53.130863 -45.570019 -9.543460 -24.355486	41.051157 -40.502116 -8.482118 -21.417535	24.825744 -34.043662 -7.129563 -17.642564	46.121131 -39.119844 -8.192638 -20.927085	45.471027 -40.262732 -8.431986 -21.464231	33.496392 -37.138181 -7.777629 -19.484626	49.863901 -45.446561 -9.517604 -24.173434	38.393222 -39.996553 -8.376241 -21.070454	42.189380 -36.520282 -7.648227 -19.504234	43.535459 -36.007293 -7.540794 -19.302316	2.919996 -21.958590 -4.598658 -10.893073	28.633876 ~35.257883 ~7.383850 ~18.380436	46.894186 -41.181306 -8.624357 -21.968264	-18.772510

RANGE OF X-9 RANGE OF MINOR RANGE OF MAJOR RANGE OF X-9 RANGE OF X-9 RANGE OF MINOR RANGE OF MAJOR			MAXIMUM			179			÷ .	178			
STRESS STRESS PRINC. PRINC. STRESS STRESS FRINC. PRINC.	CPADE STRESS AT BOTTOM OF LAYER STRESS BOT. LAYER STRESS BOT. LAYER AT BOTTOM OF LAYER AT BOTTOM OF LAYER AT BOTTOM OF LAYER AT BOTTOM OF LAYER TAYER	DEFLECTI	OR MINIMUM VALUES	11.000	11.000	0,000	17.000	11,000	11.000	0.000	17,000		11.900
LAYER		ON ON		-8.296525 -21.185267	-39.615907	60.641310	-21.569720	J 1	· ω	61.741780	-19.877990	-7.918747	-37.812016
FROM FROM FROM FROM FROM FROM FROM	### T	AND	OF (COMPRESSION	- 10.5	-28.4	46.5	-16.2	9.8-	-28.4	ക ന ഗ	-12.2	-4.3	-20-7
-45.511 -32.577 -32.570 -32.518 -24.329 -18.588 -24.355	1.968	0.012697 0.000000	N N	-16.249360	28.496674	512630	16.274118	5.961007	6380	583498	12.288863	-4.338390	715812
AT NODE 172	8 AT NODE 170	AT NODE 17	POSITIVE):	-0.998234	-2.248745	2.857373	0.865912	0.408515	1,950660	-2.478611	-1.679839	-0.792505	-3.764213
70 70 70 70 70	0	00		-16.055122	-28.05	61.19	-16.136124	-5.895905	-28.152946	62.13	-11.933659	-4.170814	-19.91563
37.989 3.615 2.626 37.989 18.961 3.185 3.185 18.961				55122	28.059109	197304	36124	35905	52946	136778	3659	10814	5636
AT NODE				-21.37	-40.05	45.95	-21.70	-8.524439	-40.70	46.188	-20.233	-8.086323	-38.612
1 1 1 1 1 1 1 1 1 1				.379505	0163	6637	7714	4439	4198	3501	3194	5323	2192

SUM OF REACTION FORCES = 32000.16

153 153 153 153 153 153 153 153 153 165 165 166 167 167 167 167 167 167 167 167 167	1131 131 133 133 133 133 133 134 134 134
0.009851 0.009483 0.009483 0.009483 0.009786 0.007786 0.0012200 0.012141 0.01109717 0.0016613 0.012667 0.002379 0.001279 0.0012867	0.00001 0.011627 0.011573 0.011387 0.011060 0.010651 0.0109894 0.0098747 0.009218 0.0098747 0.008160 0.007524 0.006903 0.011939 0.011357 0.011687 0.011687 0.011687
0.000045 0.000045 0.000045 0.000045 0.000050 0.000050 0.000050 0.000052 0.000052 0.000053 0.000053 0.000053 0.000053 0.000053 0.000053 0.000053 0.000053 0.000053 0.000053 0.000053 0.000053 0.000053 0.000053 0.000053 0.000053 0.000053	0.000022 0.000022 0.000023 0.000034 0.000034 0.000034 0.000035 0.000032 0.000032 0.000032 0.000032 0.000032
0.000043 0.000041 0.000041 0.000040 0.000040 0.000039 0.000037 0.000037 0.000037 0.000037 0.000040 0.000037 0.000040 0.000040 0.000037 0.000040 0.000037 0.000040 0.000037 0.000040 0.000037 0.000040 0.000037 0.000040 0.000037 0.000040 0.000040 0.000040 0.000040 0.000040 0.000040 0.000040 0.000040 0.000040 0.000040 0.00004040	0.000054 0.000054 0.000055 0.000053 0.000053 0.000047 0.000047 0.000047 0.000047 0.000047 0.000047 0.000047 0.000047
1.470 1.396 1.305 1.207 1.110 1.889 1.860 1.735 1.671 1.671 1.671 1.506 1.968	1.023 1.7902 1.765 1.765 1.588 1.588 1.484 1.356 1.070 1.851 1.865 1.765 1.765 1.765 1.765 1.765 1.765
109.880 105.724 100.419 93.927 86.875 40.981 172.406 343.292 338.019 328.624 316.849 305.230 294.993 2262.028 2275.480 2211.611 421.735 415.812 404.376 339.844 3375.703 353.325 353.325 353.325 279.7454 275.741 275.741 275.741 275.741 275.741 275.741 275.741 276.061 276.061 276.102 279.771 234.826 226.102 242.771 234.826 226.102 242.390 188.538	37.841 64.820 129.015 126.938 123.334 118.836 114.367 110.794 102.754 97.502 91.002 83.955 39.529 66.559 132.2443 126.657 122.150 117.634